
202 METHOD FOR COMPUTING CERTAIN INVERSE FUNCTIONS

For roots other than the principal root the program was modified by replacing

mk (mod p) by p"mk (mod p), (v = 1,2, ■ ■ ■, k — 1), where p is a primitive root

of p. In this case the primitive roots subroutine was incorporated into the routine

and the k sums were computed abreast and added in 12 as a check.

Emma Lehmer
Berkeley, California

1. G. B. Mathews, Theory of Numbers, Cambridge, 1892, p. 202-212.
2. Ibid., p. 223-228.
3. J. von Neumann & H. H. Goldstine, "A numerical study of a conjecture by Kummer,"

MTAC, v. 7, 1953, p. 133-134.
4. G. Beyer, "Über eine Klasseneinteilung aller kubischen Restcharaktere," Abh. Math.

Seminar, Univ. Hamburg, v. 19, 1954, p. 115-116.
5. H. Hasse, Vorlesungen über Zahlentheorie, Berlin, 1950, p. 457-466.
6. P. Bachmann, Die Lehre von der Kreistheilung und ihre Beziehungen zur Zahlentheorie,

Teubner, Leipzig, 1872, p. 228-230.
7. A. J. C. Cunningham, Quadratic Partitions, London, 1904.
8. Edmund Landau, "Über die Verteilung der Primideale in den Idealklassen eines alge-

braischen Zahlkörpers," Math. Annalen, v. 63, 1906-7, p. 204.
9. Emma Lehmer, "The quintic character of 2 and 3," Duke Math. J., v. 18, 1951, p. 11-18.

A Method for Computing Certain

Inverse Functions

A method will be demonstrated for computing the inverse of certain functions.

The method is applicable to the computation of logarithms and inverse trigo-

nometric functions. It makes use of the binary expansion of real numbers and is,

therefore, particularly suitable for use in automatic digital computing machines

which use the binary number system. It is not recommended for hand computing.

1. The Method. Let/(x) be a function which satisfies the following conditions,

(i) f(x) is continuous and monotone on an interval (0, a]

(including a, but not including 0),

(ii) f(a/2) is known,

(iii) /(2x) and /(2x — a) can be computed when f(x) is known.

(0, a~\ is taken to mean [a, 0) if a is negative. Also, the symbol (/(0),/(a)]

will be taken to mean (/(0, +), /(a)] (/(O, -), /(o)], \~J(a), /(O, +)) or

ZJ(a), /(0, —)), whichever is appropriate.

Examples are :

(a) f(x) = 2* a = -1

filx) = (f(x)Y f(2x + 1) = 2(/(x))2

(b) f(x) = cos x a = it

f(2x) = 2(f(x))2 - 1 f(2x - x) = 1 - 2(/(x))2

Let y e (/(0), /(a)], and let it be required to compute f~l(y), that is, to find x

such that f(x) = y. The existence and uniqueness of such an x in (0, a] are

guaranteed by condition (i). Let w = x/a. Then w is in the interval (0, 1]. It

METHOD FOR COMPUTING CERTAIN INVERSE FUNCTIONS 203

follows that w has an expansion as a binary number,

oo

w = zZ un-2~n
n=l

where un = 0 or 1 for each n. Where two such expansions exist, choose the one in

which there are infinitely many m„'s equal to 1. For each non-negative integer k, let

00

V>k = Z Un+k-2~n,
n-1

Xk = wka.

Then xo = x and each xk is in the interval (0, a]. Also, for each k,

Xk — 2Uk+lO' + 2Xk+l-

Thus,

uk+i =

This is equivalent to

0 if f(xk)e(f(0),f(a/2)-}

0 if xk « (0, a/2]

1 if xk e (a/2, a].

1 1 if /(x*)e(/(a/2),/(a)].

By condition (iii), it follows that /(x*+i) can be computed when f(xk) is known.

Since f(xo) = y is given, an inductive procedure is established for determining

the «¿'s. These determine w, and the required number x is wa. The procedure will

be illustrated in three examples :

Example 1. Compute log2 (.6). In this example,

/(*) =2- a = -1

/(2x) = (f(x)Y f(2x + 1) = 2(f(x))2

(/(0), /(a/2)] m (1, V3] (/(a/2), /(a)] = (V3, .5].

Since we have to square each f(xk) anyway, we can test whether f(xk) is in

(0,/(a/2)] or (/(a/2),/(a)] by squaring and comparing with .5. Thus, each

step consists of squaring f(xk), comparing with .5 and recording uk+i = 1 if

(f(xk))2 < -5, and uk+i = 0 if (/(x*))2 > .5. Then we record f(xk+i) which is

either (f(xk))2 or 2(/(xa))2, whichever is between .5 and 1.

* /(**) (f(Xk))2 Uk+i

0 .6 .36 1
1 .72 .5184 0
2 .5184 .26873 856 1
3 .53747 712 .28888 16545 23494 4 1
4 .57776 33090 46988

Thus w = .1011 • • • (binary notation) and log2.6 = aw = —.1011 • • • (binary)

= -(11/16 + e) 0 < í < 1/16.

204 METHOD FOR COMPUTING CERTAIN INVERSE FUNCTIONS

Example 2. Compute arc cos 0.5. In this example,

f(x) = cosx a = it

f(2x) = 2(/(x))2 - 1 /(2x - t) = 1 - 2(J(x))2

(f(0), /(a/2)] = (1, 0] (f(a/2), /(a)] = (0, -1]

At each step we record uk+i = 0 if f(xk) > 0, uk+i = 1 if f(xk) < 0. Then

f(Xk+i) = ± (2(f(xk)Y - 1), the sign ± is that of f(xk).

k fix/) uk+i 2(J(xk))2 - 1

0 .5 0 -.5
1 -.5 1 -.5
2 .5 0 -.5
3 -.5 1 -.5

w = .0101 ••• (binary),

w = 1/3
arc cos 0.5 = 7r/3.

Example 3. Compute arc cos 0.2.

k fix/) uk+i 2ifixk))2 - 1

0 .2 0 -.92
1 -.92 1 .6928

2 -.6928 1 -.04005 632
3 .04005 632 0

w m .OliO'••■ (binary)

w = 3/8 + i, 0 < e < 1/16

arc cos 0.2 =w= 3tt/8 + eir, 0 < eir < 0.1964.

2. Error Analysis. Condition (iii) is seldom realized in practice, for required

quantities are usually "computable" only approximately. Even so simple a

process as squaring cannot be repeated indefinitely without eventually "rounding

off." A more practical condition than (iii) is

(iiia) there exist small positive numbers 5 and e, such that when /(x) is given,

ix € (0, a]) numbers can be computed which differ from /(2x) and /(2x — a),

respectively, by less than e, and such that for any pair x, x' e (0, a],

|/(x) — /(x')| < e implies \x — x'\ < 5.

Hereafter e will designate the maximum roundoff error. Suppose that the

calculation of x proceeds as indicated above, except that at each stage the true

value of /(x„) is replaced by an approximation y„, computed in accordance with

(iiia). Then for each n,

\yn — /(2/-1(yn-l) - aUn) I < €

METHOD FOR COMPUTING CERTAIN INVERSE FUNCTIONS 205

and this implies

Now, let
I/"'(y«) - 2/-1(yn-i) + aM„|<5.

20 = X

and for each positive integer N, let

N

Zn = aZ ttn-2-» + 2-"/->(yjV).
n=l

That is, zs consists of the first N binary digits of w plus an error term. Then,

for.each n,

Zn - Zn-i = 2-»(/-1(y„) - 2/-1(y„-i) + aun)

I Zn - Zn-1 I < 2—5.

Thus for every N

\zN x\ = \zN Zo\

N

E (*.
n-l

< £ 2~nS < s.

Thus each zn differs from the required x by less than 5. If the process could be

carried on indefinitely, therefore, roundoff errors would introduce a total error

no greater than 5. Since 5 is a function of the computation facilities available and

independent of the number of steps executed, it will be designated as the maximum

residual error. It is interesting to note that the maximum residual error is nu-

merically equal to the maximum error that could result from rounding the input

number, y.

If the process is terminated after N steps, the result is an underestimate and

should, therefore, be "rounded up" by adding 2~N~la. The computed value for

x is, then,

This differs from Zn by

a((i-^)+2-)

2-» (/-'(») - a/2)

which is not greater in absolute value than 2~N~la. Therefore, 2~N~l\a\ is desig-

nated the maximum termination error. The total error is obviously less than the

sum of the maximum residual error and the maximum termination error.

In Example 1 above (log2y), the maximum residual error is 1/2(2'

where e is the maximum roundoff error. It is less than

1)

1/2
e loge2

1 - e loge2

The maximum termination error is 2~lf~l.

206 METHOD FOR COMPUTING CERTAIN INVERSE FUNCTIONS

In Examples 2 and 3 above, arc cos y, the maximum residual error is

arc cos (1 — «), which is approximately V2e, and the maximum termination error

is ir/2N+l.

3. Programming for Machine Computation. A typical machine program for

the computation of /_1 (x) by the method of section 1 would be as follows :

(It is assumed that /(x) is an increasing function of x. If it is a decreasing

function, then the relation > should be replaced by < in Step 1.) The symbol

Cm means "contents of cell m."

Cell Number Initial Contents Representing

i y y«

2 1/2 2-"-1
n

3 0 EWi-2-«
¡=i

4 2~N 2~N

5 /-1(a/2) /-W2)

Program :

Step 1. If Ci > d, proceed to Step 3. If not, proceed to Step 2.

Step 2. Compute /(2/_1(Ci)) and store in cell 1. Proceed to Step 5.

Step 3. Compute /(2/_1(Ci) — a) and store in cell 1. Proceed to Step 4.

Step 4. Store C2 + C3 in cell 3. Proceed to Step 5.

Step 5. Store I/2C2 in cell 2. Proceed to Step 6.

Step 6. If C2 < d, proceed to Step 7. If not, proceed to Step 1.

Step 7. Store C2 + C3 in cell 3. Store a-C3 in cell 3.

The computed value of f~liy) is Cz.

Of course, the program outlined above can be improved when special prop-

erties of fix) are known. If, for example, fix) is monotone in the interval (0, 2a]

then comparing of /(x) and /(a/2) is equivalent to comparing /(2x) and /(a).

(This condition is satisfied by 2X, but not by cos x.) If in addition, /(x — a) can

be computed when fix) is known, the program outlined above can be modified by

placing /-I(a) rather than /-1(a/2) in cell 5, and altering steps 1-3 to read:

Step 1. Compute /(2/-1(Ci)) and store in cell 1.

Step 2. If Ci > d, proceed to Step 3. If not, proceed to Step 5.

Step 3. Compute /(/_1(Ci) — a) and store in cell 1. Proceed to Step 4.

The modified program has several advantages. For one thing, Step 3 of the

modified program is likely to require fewer orders than Step 3 of the original

program. In the case of the function f(x) = 2X, for example, Step 3 of the modified

program is multiplication by 2, whereas in the original program, it is squaring

and multiplying by 2. Another advantage in the case f(x) = 2X is that f(a) = 1/2

is more easily and accurately evaluated than /(a/2) = Vl/2.

It may be possible to take advantage of special features of the particular

METHOD FOR COMPUTING CERTAIN INVERSE FUNCTIONS 207

machine to be used, by combining certain steps. A program for log2 x has been

developed for the CRC-102A Computer, which has only four commands in the

repeating loop, and only three additional cells referred to in the repeating loop.

The repetitive part of the program is shown below, coded in octal, with explana-

tory notes at the right.

Cell Number

2000
2001

2002

2003

2004

2005
2006

2007

(Initial) Contents

25 2007 2007 2007
27 2006 2005 2006

31 2006 2007 2006

37 2006 2003 2000
34 3000 2100 — *
00 0000 0000 0001

37 7777 7777 7776

y

Square y

Shift logical

Scale factor

Test overflow

Exit

Shift control

See text

* Address of next command in main program.

The number in cell 2006 is

2n-35/ 1 _ 1 ¿Mi.2-J - 1.

4. Other Inverse Trigonometric Functions. Although the method given above

is applicable directly to the computation of other inverse trigonometric functions,

the functions/(2/-1(y) — una) are in general more complicated than ± (2y2 — 1).

It is advantageous, therefore, to evaluate other inverse trigonometric functions

by converting them to inverse cosines, as follows:

arc sin y = x/2 — arc cos y

(1 - y2\- I
l +y2/

(sign is that of y)

/1 - y2\
arc cot y = 7r/2 =fc 1/2 arc cos I - I

M + y2 /

(sign opposite that of y)

arc sec y = arc cos (1/y)

arc ese y = — arc cos (1/y).

The application to arc sin y provides an interesting algorithm for computing

arc sin y, which may be useful even in hand computing. The algorithm is as

follows :

208 SOLVING ALGEBRAIC EQUATIONS BY AN AUTOMATIC COMPUTER

1. Iterate the function 2y2 — 1, starting with the number y whose arc sin is

required.

2. Record the signs of the iterates in order.

3. Accumulate the signs; that is, record the "partial products" of the signs

in order.

4. Write descending powers of 2 between the signs accumulated.

5. Multiply the series obtained by ir/2.

Example : Compute arc sin V-75

1. V^5, .5, -.5,
2. + +
3. + +

4. +1/2 +1/4 -1/8
5. tt/2-(2/3) = ir/3

arc sin V-75 = x/3.

5. Comparison with Other Methods. The usefulness of the method described

above as compared with other methods depends, of course, on the function to be

evaluated and on the features of the machine to be used.

The fact that each iteration yields exactly one binary bit may be an advantage

or a disadvantage ; a method where error decreases faster than 2~" will converge

with fewer iterations than this one. On the other hand, one iteration of this

method may consist of fewer commands than an iteration of another method.

The logarithm program for the CRC-102A described above has 4 commands per

iteration as compared with 14 commands per iteration in another program for

logarithm on the same machine. The program for arcsin by the method described

above has 9 commands per iteration as compared to 22 for another arcsin pro-

gram. The fact that each iteration yields exactly one binary bit also simplifies

error analysis, for the number of digits of accuracy is exactly one less than the

number of digits computed.

D. R. Morrison
SANDIA Corp.
Albuquerque, New Mexico

A Method for Solving Algebraic Equations

using an Automatic Computer

Introduction. Many methods have been developed for solving algebraic equa-

tions and several of these have been used with automatic computers [1, 2]. Those

methods which are most suitable for use with automatic computers are ones

which apply to a wide class of equations and which are relatively rapid when the

degree of the equation is large. The method described here has been constructed

with these considerations in mind and has been programmed for the Illiac

computer at the University of Illinois.

-.5, -.5 •••

+

+ 1/16 -1/32 •■■ =2/3

