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Uniqueness of the Project!ve Plane of Order Eight

1. Introduction. A finite projective plane with re + 1 points on each of its

lines is said to be of order re. Such planes are known to exist whenever re is a

prime or prime power, there being at least the Desarguesian plane coordinatized

by the finite field with re elements [8]. For some time it has been known [9] that

for order 9 there are some non-Desarguesian planes. It is an easy exercise to

construct the planes of orders 2, 3, 4, and 5 and to verify that they are unique.

The results of Brück and Ryser [1] include as a special case the nonexistence of

planes of order 6 although this special case had been shown earlier by Tarry [7].

The combined results of Pierce [5] and Hall [2] show the uniqueness of the plane

of order 7. In this paper we show the uniqueness of the plane of order 8, thus

showing that 9 is the smallest order of a non-Desarguesian plane.

The demonstration of the uniqueness of the plane of order 8 is based on Norton's

complete list of Latin squares of order 7 [4], there being a total of 147 varieties

of these, an omission in Norton's list having been found by Sade [6]. By a theo-

retical argument it is necessary to consider only 100 of these, and machine

calculations, described in section 4 of this paper carried out on SWAC at the

University of California, Los Angeles, went far enough so that it was not difficult

to complete the work by hand. The completion of the search is given in section 5

of this paper.

2. Theoretical basis for calculation. Let A, B, C be the vertices of a triangle

in a plane of order re. Call AB the line at infinity Lx, AC the line x = 0, and BC

the line y = 0. Label the re — 1 remaining lines through A as x = 1, x = 2, •••,

x = n — 1 in any order and also the re — 1 remaining lines through B as y = 1,

■ • -, y = re — 1 in any order. A point P not on L„ will then lie on a unique line

x = a and a unique line y = b. Then assign to P the coordinates (a, b).

The n — 1 lines through C = (0, 0) apart from AC and BC will intersect each

ofx= 1, •••,x = re— 1 once and each ofy = l,---,y = w — 1 once. Such a

line L will intersect LK in some infinite point and will also contain (0, 0) and

re — 1 points (i, j) where i and j take values 1 to re — 1. With L associate the

permutation (    '   ' ) if (0, 0), (1, ai), ■ ■ ■, (re — 1, an-i) are the finite
\(J, di, • • -, a„_i    /

points of L. The re — 1 different L's yield permutations :

On, o-u, • • •,    öl,n-l

du,        a22,        • • -,    a2,n-i

(2.1) ; ;

ttn-1,1,       ön-1,2,       ""i       ttn-l.n-1

and the array (2.1) will form a Latin square of order re — 1. Since a line through

C intersects each ofy = l,---,y = w — 1 once, each row of (2.1) contains each

of 1, • • •, re — 1 once. Since a line x = i intersects the « — 1 L's in different points

the i'-th column will contain each of 1, 2, • • -, re — 1 once. The three constraints,

row, column, digit correspond respectively to a line through C, a line x = i and
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a line y = j. The interchanging of these three constraints corresponds therefore

to an interchange of the roles of the vertices A, B, C in the construction of het

Latin square. A permutation of the rows is merely a permutation of the order in

which the lines through C are taken. A permutation of the columns corresponds

to a relabeling of the lines x = c through A and a substitution on the digits corre-

sponds to a relabeling of the lines y = c through B. Thus, these equivalent forms

of Latin squares obtained by permuting rows, permuting columns, and substitut-

ing on digits, amount to no more than relabeling the lines of the three-net of

pencils through the vertices of a triangle ABC excluding the sides. And an inter-

change of constraints corresponds to altering the roles of the vertices A, B, C in

obtaining the square (2.1). It is immediate that any Latin square of order re — 1

may be used as an array (2.1) corresponding to a three-net of the pencils through

three points A, B, C excluding the sides. It is not immediate nor even true

that any Latin square yields a three-net which can be extended to a complete

plane. (However, for countably infinite planes this and more is true.) [3].

Norton [4] has given a list of the Latin squares of order seven to within the

equivalences of permuting rows, columns, substituting digits and interchanging

the constraints. Norton lists 146 varieties. Sade [6] found an omission and

verified that with this additional variety included the list is complete.

These 147 squares form the starting point in our search for planes of order 8.

We seek to complete these by adding as many as possible additional lines not

through A, B, or C. It is however sufficient to treat only 100 of the 147, effecting

a saving of approximately one-third of the machine time. Norton lists his squares

according to the number of intercalates which they contain, an intercalate being

a sub-array of the type :

a ■ ■ ■ b

(2.2)

b ■ • ■ a.

If the columns of the intercalate (2.2) are the z'-th and j-th then the four points

(i, a), (i, b), (j, a), and (j, b) are such that no three lie on a line and so they form

a quadrilateral. The diagonal points of this quadrilateral are the points A, B, C.

Conversely if A, B, C are the diagonal points of a quadrilateral these four points

yield an intercalate in the array (2.1). Now in a plane of order 8 there are

73-72-64-49/1-2-3-4 quadrilaterals and there are 73-72-64/1-2-3 triangles.
Now for some quadrilaterals the diagonal points may lie on a line. (Indeed in

the Desarguesian plane of order 8 this is always the case.) Thus the triangles of a

plane of order 8 are diagonal points of quadrilaterals at most 73 • 72 • 64 • 49/1 • 2 • 3 • 4

times and as there are 73-72-64/1-2-3 triangles there must be a triangle A, B, C

which yields a square with at most 49/4 intercalates and thus at most 12 inter-

calates. Hence in constructing a plane of order 8 we may start from a square of

order 7 with at most 12 intercalates. Such squares are numbers 1 through 99 of

Norton's list and the omission found by Sade.

3. Completion of squares to the full plane. The one hundred squares of order 7

used in the search for planes of order 8 could all be normalized so that the first
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two lines read, adding an initial 0 for C — (0, 0),

,.'  . 01234567
{     ' 0 2 3 4 5 6 7 1.

It is sufficient to deal with the finite points (i, j) i, j = 0, 1, • • -, 7 constructing

an affine plane of order 8 since the completion to a projective plane by adding

infinite points and L„ is trivial. The pencil through (1, 1) will include the lines

x = 1, y = 1 and the line 0 1 2 3 4 5 6 7 of (3.1). The remaining lines through

(1, 1) will go through the points (2, 3), (3, 4), (4, 5), (5, 6), and (6, 7) of the second

line of (3.1) and there will also be a line through (1, 1) parallel to the second line

of (3.1). These six lines will thus have the appearance:

XI  3 X X X X X
X1X4XXXX

,. XÍXX5XXX
{    ' XIXXX6XX

X  1 X X X X  7 X
XÍXXXXXX.

Here X's stand for digits to be filled in. Similarly when the six lines of (3.2) have

been added to the lines given by one of the 100 squares there will be five more

lines of the pencil through (2, 3) whose appearance will be:

XX3X4XXX
X X 3 X X  5 XX

(3.3) XX3XXX6X
X X 3 X X X X  7
XX3XXXXX.

Earlier calculations of the lines of (3.2) were made on the Engineering Re-

search Associates 1101 Computer. For each of the 100 squares a number of

possibilities for (3.2) was found, there being between 20 and 25 for each of the

100 squares on the average. In this search the 1101 was used to perform somewhat

complicated sorting procedures. Of the 7! = 5040 permutations of the form

XÍXXXXXX there are 1478 which are consistent with (3.1) in that they

do not agree with either line of (3.1) in as many as two places. These are dis-

tributed as follows:

Type XÍ3XXXXX-Í35
I 1 I  4 I I I I - 140
X 1 X X 5  X X X - Ui
I1III6II-140
X 1 X X X X  7 X - 135

Parallel to second line     XÍXXXXXX- 787.

The set of 5040 permutations was easily built up on punched cards and the

1478 consistent cards were sorted from these. These 1478 permutations were

taken as input for the ERA 1101 and were handled in two stages. In the first stage

permutations were eliminated which were inconsistent with any one of the five

remaining lines of a particular square and the consistent lines were punched as
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output on tape. For each of the squares the number of consistent lines was ap-

proximately 115 to 120. This was a fast code, most of the time being taken up by

punching outputs, and averaged about three minutes for each square. The second

stage involved taking the 115 to 120 consistent lines for each square and forming

the six lines (3.2) from these in every possible way. This was relatively slow taking

about half an hour for each square and yielding, as remarked above, about twenty

solutions for each square. In every case tried, except for the Desarguesian plane,

only three or four further lines could be added. But working by hand it took at

least an hour to test the construction of further lines given a square and the

lines of (3.2).

4. Description of the SWAC code. Making one hundred separate runs SWAC

took each 7X7 square with no more than twelve intercalates and constructed

the six lines of (3.2) and the five lines of (3.3), punching them as output whenever

all eleven were found. The method employed was to try, for each of the X's in

(3.2) and (3.3), all possibilities 0,1, • • -, 7 compatible with previously assigned

X's. To specify the criteria of compatibility let Pi(j) be the j-th element of the

i-th row of the 7X7 square augmented by an initial column of zeros, and P/U)

the similar element of (3.2).

For any (*, j) referring to an X in (3.2) all Pk'(l) with k < i or with k = i

and I < j will be assumed already assigned. The restrictions on Pi'(j) are then

(a) Pi'(j) * 1,

(b) Pi'(j) * i + 2'û i < 6,
(c) P/U) * Pi'(I) tor any Kj,
(d) P/U) 9¿Pk'(j)íoranyk < i,

(e) If for any I < j or I = 2 or I = i + 2 we have P/(l) = Pk(l), then

P/U)fP*U)-
The first three conditions insure that each row of (3.2) is a permutation. The

last two prevent any such row from agreeing in two positions with any previous

row of (3.2) or any row of the 7X7 square.

For an element Pi" (j) of (3.3) we have conditions like these plus an additional

condition similar to (e) but with P replaced by P'. In the following discussion we

shall consider only the assignment of the P/U) ', the case OI the P/'U) 1S more

complicated due to the extra condition but is basically the same.

To apply these criteria we construct the set of allowable values of Pi(j). If

s*= {i}u{!^2!   |{  l<66}u{Pi'(i)\Kj\,

then any P/(j)eS* (the complement of S*) will satisfy (a), (b), and (c). Similarly

(d) and (e) will be satisfied if P,'(j)eSy, where

Si = {Pk'U)\k < i\ U IPkU) \Pk(2) = 1 or Pk(i + 2) = i + 2

or Pk(l) = P/(I) for some I < j}.

(Because of (3.1) the conditions Pk(2) = 1 and Pk(i + 2) = i + 2 imply k = 1

and k = 2 respectively. This convenient simplification is not essential.) Hence

S = S* H Sj is the set of values of P/U) compatible with those already assigned.

To select a P/U) one computes S*, Sj, and S. Suppose first that S is not
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empty. Then P/U) 1S taken to be the smallest element of S, and one moves on to

the next unfilled position in (3.2). If this position is in the same row 5* is replaced

by S* U [P/U)}, j replaced by j + 1 (or j + 2 il j = i + 1), and the new Sj

calculated. On moving to a new row i is increased by 1, j put equal to 1, and S*

set equal to jl, i + 2} if i < 6 or {1} if i = 6. When (3.2) is completely filled

one starts a similar process in (3.3) ; when this is filled one records all the P/U)

and Pi"(j).

Suppose now that for some (i, j) the corresponding S is empty. This means

that the previously assigned P/(j)'s must be changed. One therefore "back-

tracks," returning to the previously considered Pi(j) by reducing j or, if necessary

to move up to the preceding row, by reducing i and putting j = 8. In the former

case one gets back the old S* by removing the element P/U) ', m the latter one

puts 5* = {0, 1, • • -, 7}. The old S¿ could be re-computed, or it could have been

saved from the time of its previous use. Since the calculation of Sj is somewhat

complicated, and since there is much back-tracking and advancing within a row

but not much between rows, it was decided to save the Sj within each row but to

re-compute them on back-tracking to another row.

After back-tracking and re-computing 5 one must of course avoid selecting

from 5 the same P/U) that had been used before. This is accomplished by re-

moving from S all elements less than or equal to the P/U) that was last used. In

this way the successive selections of P/ (j) for a given (i, j) are strictly increasing

until all possibilities are exhausted and one backtracks still farther.

After a solution is recorded the process is continued by the standard back-

tracking procedure, just as if one had proceded to a next step and found S = <b.

The whole process stops when all possibilities for P/(i) have been exhausted.

In applying a routine of this sort it is obviously advantageous to eliminate

many possibilities early in the process. In particular, in each row of (3.2) it is

helpful if Sj is as large as possible for small j. In the set-up as described

Si = {Pk'(l)\k <i\ U {0}.

However if we make a cyclic permutation of columns so that the first element

of each row becomes the last we get

Si = {P*'(l)|* <i] U {1,2}.

This slightly better situation was used in the coding.

In coding this process for SWAC the significant factor was the small (256

word) high-speed memory (HSM). The program had to be stored on the magnetic

drum and appropriate parts transferred to the HSM when needed. Fortunately

it was just possible to squeeze into the HSM the whole procedure for handling

the P/U) and also for the P/'(j). The delays due to drum transfers entered only

in the transfer from one of these routines to the other, and in the negligible number

of input and output processes. Elements of a set were represented by positions

within a word; i.e., the subset [ai, a2, • ■ • j of {0, 1, • • -, 7} was represented by

the number X 2~ai~1. This representation makes it easy to code the set operations

of union, intersection, and picking the smallest element.

The general flow of the code may be described by considering fourteen sub-

routines as follows:
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Possible
Routine      Predecessors

A (G,) (New run)

B, A,D,,F,,G2

G

D¡

Et

Ft

G.
B2

C2

Dt

F2

G2

Bi

C,

S,

Mi

JSi
•Di, 7?2, £2

S2

C2

Sj

£2

E2

D2

Operation Performed

Input given square, cata-
logue it by element and
position

Compute possible values
available for new posi-

tion

Store first available value
in proper position

Advance position

Test whether backtrack
is possible

Backtrack. Go back to
nearest available posi-
tion and recompute

Halt or input new square

As in B¡

As in C\

As in Dt

Test whether backtrack
would carry back into
first six lines formed

Backtrack as in Fi

Backtrack to next to last
position of first six lines

Punch 11 lines

Criterion for
Successor

Are any values avail-
able?

Is first set  of lines
complete?

Is a position open in
which to back-
track?

As in Bi

Is second set of lines
complete?

Is backtrack in last
five lines possible?

Successor

Yes No

Bi 5,

Ci E,

D¡ Dx

B2 Bi

Ft Gi

Bi Bi

(A) (A)
C2 £2

D2 D2

P B2

B2      B2

Bi      Bi
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5. Results of calculations. For only one of the hundred 7X7 squares was it

possible to construct the six lines of (3.2) and the five of (3.3). This was Square

Number 1 :

0 12 3 4 5 6 7
0 2 3 4 5 6 7 1
0 3 4 5 6 7 12
0 4 5 6 7 12 3
0 5 6 7 12 3 4
0 6 7 12 3 4 5
0 7 12 3 4 5 6,

and four sets of eleven lines were found for this. The computing time for a square

varied from eight to fifteen minutes, averaging about twelve minutes.

The four ways of adding the eleven lines to Square Number 1 are :

1 2

21357046 21357046

51643720 31746250
61705432 71065432
41072653 51472603

31460275 61520374
71526304 41603725

56374102 17364205
67310524 70316524
40321765 54321760
14306257 65302417
75362410 46370152

21360754 21376405

51746203 71542036
71405326 61025743
41027635 31750624
31652470 51463270
61573042 41607352
67304215 15304726
14372506 70361542
50317462 47352160
46351027 64310257
75326140 56327014

Of these the first two cannot be completed to planes while the third and fourth can

both be completed uniquely to planes, the completion being the unique Desargue-

sian plane in both cases. Indeed the second is equivalent to the first so far as

completion is concerned since if we interchange coordinates, replacing (x, y) by

,      x       ,u L j- i.       ,.     ./0 123456 7\,
(y, x) and then renumber according to the substitution \n*f:4'),jei) the
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first six lines of the second case become the first six lines of the first case, while

this change leaves the lines of Square Number 1 unchanged. Thus if either of the

first two can be completed then both can. But in fact neither can. In the first

case no line XXXÓX7XX can be added while in the second no line

X X 7 X X ó X Xcanoe added.

In the fourth case if we interchange coordinates, replacing (x, y) by (y, x) and

,    .     .     (0 1 2 3 4 5 6 7\
then renumber all coordinates according to the substitution In <  j 7 5 í i r    i

Square Number 1 is unaltered and the first six lines of the fourth case become the

first six lines of the third case, whence these two cases must lead to the same

completions. The completion is unique and is the Desarguesian plane. In the

third case this may be written:

0 12 3 4 5 6 7
10 6 4 3 7 2 5
2 6 0 7 5 4 13
3 4 7 0 16 5 2
4 3 5 10 2 7 6
5 7 4 6 2 0 3 1
6 2 15 7 3 0 4
7 5 3 2 6 14 0,

along with six other 8X8 squares whose top rows are the remaining lines of

Square Number 1 and whose columns are the same as those of the 8X8 square

above. This finally shows the uniqueness of the plane of order 8.

Although it has already been remarked that the first two cases above cannot

be completed to full planes, it is a curious fact that a great many consistent lines

may be added. These are listed here:

01234567 02345671
10475326 36051427
27046135 64273015
75362410 71526304

03456712 04567123
12637405 32176540
41072653 40321765
67310524 61705432

05671234 06712345
21357046 14306257
50216473 23570 4 61
73104625 51643720

0 7 12 3 4 5 6
3 14 6 0 2 7 5
4 5 7 3 6 0 2 1
5 6 3 7 4 10 2
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Thus we have half of seven 8X8 squares. In projective terms we have a

total of 45 lines with 9 points on a line which are consistent with themselves but

which cannot be completed to the 73 lines of a projective plane.
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On the Location of Gauss Sums

We shall understand by a generalized Gauss sum of order k the sum

p-i
Sk = Y. exp i2-KÍmk/p),    (p = kf + 1, a prime).

m=0

This sum can be thought of as the principal root z0 of the reduced period equation

of degree k for the so-called /-nomial periods, z, = krj, + 1, where, as usual,

f-i

Vi = E exp i2wigk'+i/p)    ii m 0,1, •--,*- I).

Since the remaining k — 1 roots of the period equation depend on the primitive

root g, the singling out of one root Zo as the principal root is justifiable.

For k m 2, it is well known that [1]

V£    if p = An + 1

[i^lp    if p = 4« - 1.


