The pamphlet is enriched by an excellent appendix, which can easily serve as a textbook for tyros in coding. It outlines the basic principles of programpreparation, and illustrates them by actual examples. It touches upon the use of subroutines and the choice of suitable checks to insure the accuracy of the computations.

An altogether charming booklet for 65 kopecks!

IDA RHODES

National Bureau of Standards Washington, D. C.

1. S. A. LEBEDEV, "The high-speed electronic calculating machine of the Academy of Sciences of the U.S.S.R.," J. of the Assn. for Computing Machinery, v. 3, 1956, p. 129–133.

TABLE ERRATA

252. A. A. ABRAMOV, Tablify $\ln \Gamma[z] v$ Kompleknoi Oblasti (Tables of $\ln \Gamma[z]$ in a Complex Region), Akad. Nauk SSSR, Moscow, 1953.

Published in the back of A. D. Smirnov's book, Tablifsy funkisy Étri i Spetsial'nykh Vyrozhdennykh Gipergeometricheskikh Funkisy (Tables of Airy Functions and Special Degeneration of Hypergeometric Functions) (Akad. Nauk SSSR, Moscow, 1955) are lists of errors discovered in the tables of the Akad. Nauk series issued previously. Included in these lists of errors are the following in Abramov's tables:

Page	Line	Column	As printed	Should be
14	1 from top	6 from right	-060	-160
26	18 from bottom	3 from left	302	102
54	19 from top	6 from right	89	79
61	17 from bottom	3 from left	76	70
82	24 from top	2 from left	397633	297633
82	25 from top	2 from left	202955	302955
104	11 from top	4 from right	49	46
131	8 from top	5 from left	22	32
141	10 from top	4 from left	673267	073267
143	1 from top	1 from right	80,12817	0,128178
190	4 from top	3 from left	29	. 19
217	5 from bottom	2 from right	22	32
218	2 from top	2 from right	. 0	10
273	15 from bottom	2 from right	37	27
286	8 from bottom	5 from left	0	9
319	17 from top	4 from right	45	25
321	8 from top	6 from right	35	25

253. AKADEMIIA NAUK SSSR. Institut Tochnoi mekhaniki i vychislitel'noi tekhniki. Matematicheskie Tablitsy. Desiatiéna Tablitsy logarifmov kompleksnykh chisel i perekhoda ot dekartovykh koordinat k poliarnym. Tablitsy funktsië [Ten place tables of logarithms of complex numbers and of the transformation from cartesian to polar coordinates. Tables of functions] $\ln x$, $\arctan x$, $\frac{1}{2} \ln (1 + x^2)$, $(1 + x^2)^{\frac{1}{2}}$. Moscow, 1952. [See RMT 1206, MTAC, v. 8, 1954, p. 149.]

Published in the back of A. D. Smirnov's book, Tablitsy funktsy Étri i Spetsial'nykh Vyrozhdennykh Gipergeometricheskikh Funktsy (Tables of Airy Functions and Special Degeneration of Hypergeometric Functions) (Akad. Nauk SSSR, Moscow, 1955), are lists of errors discovered in the tables of the Akad. Nauk series issued previously. Included in these lists of errors are the following for these tables:

Page	Line	Column	As printed	Should be
13	10 from top	2 from left	6,4756128 680	0,4756128 680
16	6 from bottom	2 from left	9,6647477 061	0,6647477 060
22	25 from bottom	2 from right	2882 741	3882 741
23	8 from bottom	2 from right	8714 020	3714 020
35	8 from top	4 from right	4,857	3,857
35	6 from bottom	2 from right	3567 723	2567 723
38	23 from top	1 from left	5,122	4,122
56	22 from bottom	1 from left	9,928	5,928
82	8 from top	2 from right	1118 566	1168 566
98	8 from top	4 from left	9890	9901
100	24 from bottom	5 from right	3330	3320
101	15 from top	4 from left	8729	8719
102	13 from bottom	4 from left	7822	7826
106	9 from top	5 from right	6267	6261
107	18 from top	4 from left	4595	4556
Insert	6 from top	11 from left	0276	0278
	—			

254. AKADEMIIA NAUK SSSR. [Institut Tochnoĭ mekhanikĭ i vychislitel'noĭ tekhniki. Matematicheskie Tablitsy. Tablitsy Integralov Frenelia (Tables of Fresnel Integrals), Moscow, 1953. [See Rev. 40, MTAC, v. 9, 1955, p. 75–76.]

Published in the back of A. D. Smirnov's book, Tablifsy funkisy Étri i Spetsial'nykh Vyrozhdennykh Gipergeometricheskikh Funkisy (Tables of Airy Functions and Special Degeneration of Hypergeometric Functions) (Akad. Nauk SSSR, Moscow, 1955) are lists of errors discovered in the tables of the Akad. Nauk series issued previously. Included in these lists of errors are the following for these tables of Fresnel Integrals:

Page	Line	Column	As printed	Should be
144	8 from top	2 from right	4857424	4857421
155	4 from top	2 from left	4857684	4857681
169	8 from bottom	2 from left	5010045	5010046
232	23 from top	2 from left	5081336	5081338

255. ISABELLE ARSHAM, Chebyshev Coefficients for Chebyshev Polynomials of Orders 12 and 24 under the General Linear Transformation (U), Report No. TR-326, Diamond Ordnance Fuze Laboratories, Ordnance Corps, Department of the Army, Washington, D. C., 1956 [Review 72, MTAC, v. 10, 1956, p. 231]. The following errata have been discovered:

Page 3, I. Introduction: formula (2)

reads	$T_m(x) = \cdot$	$\begin{cases} \cos (\text{in arc } \cos x), \\ \frac{1}{2}, \end{cases}$	$\begin{array}{l}m>0,\\m=0,\end{array}$
should read	$T_m(x) = $	$ \begin{array}{l} \cos (m \arccos x), \\ \frac{1}{2}, \end{array} $	$m > 0, m = 0, \cdots.$

Page 4, III. Method of Computation: formula (3)

reads
$$b_m = \sum_{r=0}^{\lfloor (n-m)/2 \rfloor} \sum_{j=0}^{\lfloor (n-m)/2 \rfloor - r} c_{m+2j, n-m-2r-2j} a^{m+2j} b^{n-m-2r-2j}$$

should read $b_m = \sum_{r=0}^{\lfloor (n-m)/2 \rfloor} \sum_{j=0}^{\lfloor (n-m)/2 \rfloor - r} c_{m+2j, n-m-2r-2j} a^{m+2j} b^{n-m-2r-2j}$

Page 4, line -6,

reads where t is the general... should read where $\left(\frac{s}{t}\right)$ is the general

Page 15, column 3, sixth entry,

reads	28555887360a10b4
should read	28555887360a20b4.

Note from DIAMOND ORDNANCE FUZE LABORATORIES

NOTES

John von Neumann

1903-1957

John von Neumann died in Washington, D. C. on 8 February. It is probable that no other person had done more to advance the development and application of modern electronic computers to their present state.

His contribution to this advancement was on at least three fronts; he realized the computational potential of components build of modern electronic components; he formulated and helped solve the real logical difficulties which stood in the way of exploiting this potential; he recognized and fearlessly attacked problems of importance whose solution involved millions and tens of millions of multiplications.

In another way his geniality, his reputation, and his most remarkable talent for clear exposition initiated, more than anything else, the acceptance, first by the Government and then by industry, of our present large program of construction of machines.

His interest in electronic calculators continued to the end of his scientific career. He expounded doctrines of increasing the size and complexity of these machines when componentry was available; also he studied the analogy between the operations they carried out and the operations of human thought. He considered deeply the question of reliable computation with unreliable components. He contributed in countless other ways to the development of the computing devices presently available.