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relaxation treatment can be programmed for machine, that part which requires

judgment would be difficult to code.

The disadvantage of successive approximation lies in increasing the length of

the calculation. However, as the numerical indeterminacy grows more stringent,

the initial approximation improves and the number of iterations required de-

creases. Moreover, this is a comparatively less serious disadvantage for a method

suitable for machine use. Thus the number of times the calculation is to be re-

peated for a different set of input data, the character of the equations with re-

spect to cross-linking, and the comparative labor of constructing the machine

programs must all be considered when deciding which method will prove most

convenient for any particular study.
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A Smoothest Curve Approximation

A practical problem which often comes up in numerical work is the fitting of

a curve to a finite set of known values in order to perform various operations such

as integration. The usual method of approximation consists of fitting the points

with one or more polynomials (independent of each other). By letting there be

more points for each polynomial, with the polynomials being of comparable order,

the error of approximation becomes asymptotic to a higher power of the interval

length.

However, error analyses for such methods usually depend upon the bounded-

ness of some derivative of a correspondingly high order [1]. But even if the func-

tion to be approximated is analytic, its correspondingly high order derivative may

be of sufficient magnitude that for the given interval size, a simpler method would

give better results. For instance, a fitting with an eighth order polynomial gives

the following rule:

jj{t)dt = ¿gl^ [989/(0) + 5888/(1) - 928/(2) + 10496/(3)

- 4540/(4) + 10496/(5) - 928/(6) + 5888/(7) + 989/(8)].

An application of this formula to a positive function which was everywhere small

over the range, apart from a sharp peak in the center, would lead to a negative

result. Try to convince a prospector that there is a negative amount of mineral on

his land because he finds a rich strike in the middle of it!

Frequently one contents oneself with a simpler rule which is repeated in blocks

of so many intervals per block. However, this usually introduces discontinuities in

the first derivative at the junctions of the blocks. If one were to integrate an in-
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terval broken up into 1000 equal subintervals, why should the 500th point be given

twice as big a weighting as the 501st point (the middle point), as would be the

case using Simpson's Rule? While this may not be a great objection for functions

which do not undergo great changes of nature over several intervals, it may be

quite unfortunate for those that do.

The main problem to be considered in this paper is the problem of obtaining

and examining an integration rule based on integrating a function passing through

a given set of points such that the function will have a small amount of twisting,

and such that whatever twisting is necessary will be spread out. To be more speci-

fic, we will minimize

/[>>]
f{t)\dt,

where / ranges over an appropriate set of fitting functions, say those which are

continuous and have continuous first and second derivatives.

It would be improper to consider an "angle-like" function, such as/0(£) =

t (0 < t < 1) and/o(/) = 1 (1 < t < 2), and argue that since f0"(t) = 0 al-

most everywhere,

f\fo"(t)Jdt = 0.

In fact if {/¡}   (i = 1, 2, 3, • • •) is a sequence of appropriate functions which

converge to /o, then

lim [* [/<"
i->co J 0
lim /   ífi"(t)Jdt =  oo.
i-»co J 0

Another application of this problem is that of bending a stick a little bit. A

bent stick assumes a position which, subject to the bending constraints, will

minimize its potential energy. Assuming the stick to be originally straight and

uniform, Hooke's Law implies that its potential energy will be proportional to the

integral along its arc length of the square of its curvature. If the problem is two

dimensional, and if the bending is sufficiently slight that the arc length may be

considered as being practically proportional to some coordinate axis, then we get

the problem of minimizing

/[IH
2

dt.

In considering this stick application, one may also obtain the function given in

Theorem 1 by mechanically balancing torques against curvatures.

1. Theorem. Let ta < í¡ < • • •  < tn. For each i = 0, • • -, n — 1, let f be a

cubic on the interval [£,-, /,+i]. Also let

£,/«n) -fW -0-/'(«.)•

Fori=l,---,n  -   1, letf(ti-) = f(ft+), /'(*<-)  = /'(*.-+) andf"{ti-)   =
/"(¿>+)- Let g(X) be any admissible function on [i0, in] such that g(/<)  =/(£») for
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i = 0, • • • , n. Then

f níg"(t)Jdt> f "if'WJdt
J'o J'o

if and only if g ^ /.

Proof: Define »/(£) as g(i) — f(t). Then since/'" is constant in each interval

/• t ft ft ,,_i      I* t • i .

/  "[g"(W - /   nU"(t)Jdt  -   /  "&"(0Í* + 2E /  '    V"(t)f"(t)dt
J'o J'o J'o i-oj'i

- 2Z /" l+1f'"{t)v'{t)dt m   í\v"{t)Jdt + 2[,'(íB)/"(í»
i-oj'i J'o

n-l

- !»'(/o)r«o)] - 2 £/"' (¿-th interval) [„(i<+1) - ,(/,)]
.0

=  [ " W(t)Jdt + 2 [0 - 0] - 2 "¿ 0
./ 'o »-o

which is positive for admissible non-zero 77's.

Note that were t0 and /„ interior to the end points of the interval on which /

is defined, then for minimizing / [/"(/) J¡2dt, f would be the same as before on

[¿0, tn~]. Also,/would be linear at the left of ta and the right of tn, and the first (as

well as the second) derivatives would match at i0 and tn.

The function / of Theorem 1 consists of n cubics, and each cubic contains four

coefficients. The restriction that/passes through/(í¿) at /< gives 2w determining

equations. The conditions /' (t ¿ — )  =/'(<»+) and

/"(*<-)  =/"(/<+) (* = 1, ••• ,» - 1)

give » — 1 equations each. The equations f"(t0) — 0 and/"(£„) = 0 give still

two more, giving a total of 4m. Therefore we have 4» linear equations to deter-

mine the 4w coefficients of /.

2. Definition. In Theorem 1, let ¿< = i (0 < i < n). Then for m an integer

(0 < m < m), define w(m, n) as  / f(t)dt where/(i)  = 5ro,< (* = 0, • • • , n).
Jo

The following is a table of w's for n < 10. In this table w(w, «) is the »1 + 1-st

entry of line n. Also the common denominator is factored out at the left.

«[1;1]

«[3; 10; 3]

Ko [4; 11; 11; 4]

Jas [11; 32; 26; 32; 11]

Ms [15; 43; 37;37;43; 15]

Mo* [41; 118; 100; 106; 100; 118; 41]

K42 [56; 161; 137; 143; 143; 137;161;56]

y388 [153; 440; 374; 392; 386; 392; 374; 440; 153]

Kso [209; 601; 511; 535; 529; 529; 535; 511; 601; 209]

K448 [571;1642;1396;1462;1444; 1450;1444; 1462; 1396;1642;571].
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Since/ (and therefore /fdt) is linearly dependent on the/(¿,), we get the

integration rule   /    f(t)dt =   ¿2 f(m)w(m, n). For instance, from the third
Jo m_0

line of the table,

/.
f(t)dt = -¿ [4/(0) + 11/(1) + 11/(2) + 4/(3)].

o 10

Notice that as max \jn; n — m~\ gets large, | w(jn, n) — 1 | gets small.

The following rules which follow from Theorems 6 and 7 are probably the most

useful for writing down the w's. Define D (») as the common denominator for the

w(m, n)'s. Since

and

,(2„ + 1) = v5[(iwir + (l^ir],
it follows that 2?(2» + 2) = D{2n) + 2D(2n + 1) and

D(ln + 3)   = D(2n + 1) + D(2n + 2).

A similar rule also holds for the numerators. For

m < 2«, D(2n + 2)w(m, 2n + 2)  = D(2n)w(m, 2n)

+ 2D(2n + l)w(m, 2» + 1),

and for m < 2« + 1, D(2n + 3)w(tn, 2» + 3)  = D(2n + l)w(m, 2« + 1) +

D(2n + 2)w(m, 2n + 2). For

D(\2m - n\)
0 < m < n, w{m, n)  = 1 + ( —l)m+1

2D(n)

where D(0)  = 4. Also note the obvious fact that w(m, n)  = w(n — m, n).

3. Definition. For n a positive integer, consider a function/ on [0, n] such that

/ is a cubic on [i, i + 1] (* = 0, ■ • ■ , n — 1) \f{i)  = 0 (i = 0, • ■ • , w) ;

/'(0) * 0;/"(«)  = 0;

andfori = 1, •■• ,»- l,/'(i-) -/(*+) sad /"(*-) =/"(*+). Then define
2?(«)as/"(0)//'(0).Define7(«)as;;/(í)á///'(0).Alsodefinei?(0) =7(0)  = 0.

Define x as the number 2 + \/3. Define y as--=— = y/x.
V2

4. Lemma. For n a non-negative integer, R(n)  = — 2\/3—
x" -f- ar

K»  —

Proof: R(0) = 0 = — 2\/3 -=—:-;. To use mathematical induction, let us
Xo + x~°

show that the validity of this formula for R(n) implies its validity for R(n + 1).
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Let/be the function of Definition 3 defined on [0, n +Jl]-/(0) = /(l) = 0 and
/'(O) 5¿ 0 imply that there exist real numbers a and X ^ 0 such that fit) =

X[< - at2 + (a - l)i3] for 0 < t < 1. Then

RM  _/"(D   _4a-6R{n)   7ÏÏ)    T=i

implies that a =-_ .  .    . Therefore
4 — R{n)

Ä(w + 1)=m = -2ß = -4[i R(n)

.4 - R(n)j

which, substituting for R(n), equals

rn+l   _   \—(n+l)

_2 a/5-_-_
V      x"+l  + X_(n+1)  '

1 ( — 1)"
5. Lemma. For n a non-negative integer, I in)  = — — —:-;-r-;

6 *        v '       12      6{xn + x~")

1 ( — 1)°
Proof. 7(0)  = 0 = —- — ,,\   ,   —— . To use mathematical induction, let

J 12      6(jc° -f ar°)

us show that the validity of this formula for I(n) implies its validity for I(n + 1).

Let/, a, and X be the same as in the proof of Lemma 4. Then

Kn + 1) =jr^j jl+1 fiOdt = \   jj{t)dt + /'(l)/(n)]

- Ï - if + (• -*>'<•) = 1 - ̂ P1 ['M - ¿] -2/(«)
= -1 _ (-l)n+1

12      óQc»*1 + *"<«+«]

on substituting for 2?(» + 1) and I in).

6. Theorem. For n a positive integer

W(U,   W)      =-;==-;-;-r-=   .2V6[yn+ (-y)-"]

Proof. Let /be the /of Definition 2. Then /(0)  = 1,/(1)  =0and/"(0) =0
imply that there exists a real number a such that

f{t)  = 1 - at + (a - l)f3 for 0 < t < 1.

■B,        u      /"(I)       6(a - 1)   -.      , 3R(n - 1) - 6   TT .
JR(n — 1) = -7777T = -s-^ • Therefore a = —=7-r^- . Using

/'(l)        2a -3 2J2(n - 1) - 6 8

R(n) .     i 3 - *(» - I)
*W 4 4 - 2?(n - 1)
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from Lemma 4, we see that 2?(ra — 1) = 4 t   ,   „;( and so a = 3 + -=rr-x ■
4 + R{n) R(n)

in Í1

w(0 . n)  = f*f(t)dt = jj(t)dt + y'(l)I(n - 1)

1 + I2a- 3] L_ - 6(jen_1 + xl_n) j
3

4

= l__a2a-3     (-1)"

12 6      x"-1 + x1-"

4      2R(n) ^ |_2      2?(w)Jx"-x + x1""

On substituting for 2?(w) from lemma 4 and after some manipulation, we obtain

V      '      2V6[y" + (-y)-]

7. Theorem. For

0   <»]<■, •(«.»)    -1-(-1)"3^Í(Iy)^-

Proof. Let/ be the function of Theorem 1 where í¿ = i — m (i = 0, • • • , w)

and/(i,) = i» .i. Then/(O) = l,/(-l) =/( + l) =0,/'(0-) =/'(0+) and
/"(0-) = /"(0+) imply there exist real numbers a and ô so that/(/) = 1 +

at + bt*- (1 + a + 6)i3for0 < í < 1 and/(/) = 1 + at + bt2 + (1 - a + b)tl

for —1 < t < 0. Define a = n — m ~ 1 and ß = m — 1. Then

7?f ï  /W = 6 + 6a + 45
W       /'(l)       3 + 2a + 0

and

R/.V /"(-I)      6 - 6a + 4o

RW  =-7(-îy-    3-2a + è-

Solving these last two equations, we obtain

3JZ(«) - 3R(ß)
a =

2R(a)R(ß) - 7R(a) - 7R(ß) + 24
and

-62? (a) - 62? (ß) + 36
b + 3 =

2R(a)R(ß) - 7R(a) - 7R(ß) + 24*
Now,

/n—m /(í)dí - 1

= 7(a)/'(l) - 7(/3)/'(-l) +   P  /(*)<** - 1

= 1(a) [-2a - (6 + 3)] + 7(/3)[2a - (6 + 3)] + Í (0 + 3).

Substituting the values for a and b + 3 into the last equation and multiplying

both sides by the common denominator of a and b + 3, we get

[22?(a)2?(/3) - 72?(a) - 7Ä(j8) + 24] [>(», n) - 1]

= 127(a)IR(ß) - 3] + 127(/3) [2?(a) - 3] - 22(a) - 2?QS) + 6.
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Now substitute for Ria), Riß), lia) and Iiß) the expressions of lemmas 4

and 5 and multiply both sides of the equation by ix" + x~") ix? + x~~P).

Then collect like terms to get

[(48 + 2SV3)x"+» + (48 - 28\/3)*-<*+«] [«»(«, ») - 1]

= (6 + 4V3) (-1)**" + (6 + 4\/3) (-1)-**

+ (6 - 4V3) (-1)%° + (6 - 4\/3) i-l)ßx-a.

Divide both sides of this equation by 2\/3 and substitute x = 2 + -y/3 to get

2[je«-n»+* - *-< «+«-»] [>(wi, n) - 1]

= (-l)^a+1 + (-1)»^+1 - (-l)%-<"+« - (-l)«*-«*1».

Since * = y2, we may divide both sides of this equation by

rya+ß+2   _    (_ .y)-(«+0+2)1  Pya+/S+2   _j_   (_y)-(a+í+í)|]

which using the binomial expansion, equals

"■fi 2jk\Bj _y__ 1 -  (-»)-<»+»

1 -A Ä «-' (-2w){jfe!      (-x)-~

v^ 2i+1¿! [n i + 1 f»,       w/      x     1
- S (>+!)!(>-01^'lB<fl ~2[1 + (-«)-] .5 (-W),(-^      J

8. Definition. For i- la positive integer, define B < as i factorial times the co-

efficient of ¿' in the power series expansion of t/iel — 1). In other words, letO =

B3 = Bs = B7 =  * " ' » anc* let B2, Bi, Be, Bs, • •■ be the Bernoulli's Numbers

1      J. J.      _1 _5      _691  7
6'     30' 42'     30* 66'     2730' 6' " ' '

9. Theorem. Let Pit) be a finite polynomial on the interval (a, ô). Then

/   Pit)dt = ¿2 Pia + mh)wim,n) h
J ° m-0

R * + 1-D<+1   —

wÄere A ts /Ae sub-interval length =

2[1+ (-*)-]

b — a .

m—0 J
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Proof: If this theorem holds for a given a < b, then for X a positive real num-

ber, this theorem also holds for end points Xa and X6, since new h = X old h and

-j-¿P(t) at/ = a (or 6) = X_i-^Pi-) at í = Xa (or Xo). Also, the three terms of

this equation are invariant under translations. Therefore, it is sufficient to prove

this theorem for —a = b = 1. Also, since this equation is linear in P, it is sufficient

to verify it for P(t)  = tk where k is a non-negative integer.

If k is odd, then P(t) = —P( —t) implies that all three terms of the equation

of this theorem are zero. Therefore, we may let k be even.

l\ ¿ P(-l + mh) w(m, n) h -  \    P(t)dt
2   |_m-0 J-l

-i[.C.(?Efi)*,"(",'")]-FTi

- i{i:(^)'[' - <-•■•£ : &&]+™ "} - rè
= -i{¿(ÍL^)*[1-<-1»"rTÍ^]-' + ̂ »>}-m-

Tr     .             \^(n-2m\k      2n4r~(2i\h
If n is even, - 2_,   -    = - 2^ I — ) •

if n is odd, 1 Êi^^y = -2<1l: '(2L+1Y

Using the Euler-Maclaurin sum formula [2], either of these last two expressions

equals

1 1    ,     W 2'JfeiBy

jb + i + »     è»iK*-i+ 1)! «* *

Substituting, we get

2 L 7 J       j=ij\(k- j + 1)!»>

2w(0, n)       l^/n-2mV      (-x)~m

and

D(2n + l) = V2Qy2n+1 + (-y)-(2n+1)],

we see that
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^Ê)=2iI[110(1)-^3)] = t|-

^©=216{-66+^26Z)(2)-i?(4)]}=9--

*° © - iâ [-302Z>(1) +S7Ö(3) - ö(5)] - - is1 •

07 (i) =í¿{2416 + 5 C~1191jD(2) + 120Z?(4) " D{6)^¡ = ~l'

<t>s(-) = =^| [15,61927(1) - 429327(3) + 24727(5) - 27(7)] =W      7776 u    ' w w   ' w v JJ 54    *

*•(*) = 77761"156'190 + \ t88-234Z?(2) - 14.608Z>(4) + 50227(6)

-27(8)3)
3

Therefore, the equation

hi+1f.Pit)dt = Tin) + 2 P(a + mh)wim, n)h - X
m-0 ¿>1   (*'   +   1) !

[Ipffl,!-«.^.)]^-,-«.^^].
gives us the series of this theorem.

/.'

10. Corollary. ^ w(w, n) = n.

11. Theorem. Z,ei Pit) be a finite polynomial on the interval (a, b). Then

Pit)dt =r(ra) + ¿ P(o + mh)wim, n)h

_ V| Ä, [pii(&) + pii(a)] + _1_ Ä4 [Piii(è) _ pm(a)]

+ "8olA6[:PiT(6) + PiT(a)] " 2ÖT6Ä6 [PV(6)  " ^^

; -Ä'[P"(ft) + *"(«)] + ítI^A" [!*"(*) - ¿»"Ml25,920      u      w *     •       518,400

¥ [P*«»(&)  + Pvüi(a)] -       f1       A"» [P*(6)  - P*ia)l4,354,560      L        w WJ      9,580,032

+ • • • , wAere A = --and lim (2 + y/3)nTin)  = 0.
w n-»co
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Proof: For each i, "£ (— m)i (— x)_mis an alternating series. Therefore, for

sufficiently large n,

£ (-jn)^-«)-™ - £ (-m)'(-x)-"
m—0 m—0

Since A'+1 is proportional to l/n^1,

lim je»     /   P(i)df - ¿ P(a + mh)w(m, n)h

< (n + 1) 'x-«^1).

+ Z h'

If we define 0,(i as) 2 mi(-t)m, then 0<+i(i)   = -y <*>,(/).
a/m—0

Since <^o(í)  =
1 + t

. 4>i(0
■/

(1 +Í)2
; *i(0

_f   _1_   4./2   _   *3

*»(0 =    ' + r,w     ; *«(0 =

-< + ¿2
= (i + 03'

< + íií2 - il«3 + t*

(l + O4     '™" (i + O6

-i + 26<2 - 66¿3 + 26i4 - i6
**(0  =

*«(0 =

U+i)6

-f + 57¿2 - 302¿3 + 302/4 - 57¿6 + <6

(i +ty

etc., and keeping in mind that

1 + x = "T = i/1 'D{2n) = 2 B-2" + (-y)-2"]

to get

w(m, n) — 1 =
-ya+l(_.y)-<(i+l)    4-   yi+l(_y)-(«+!)

=    ("I)

2[y«+ß+2   _)_   (_y)-(a+^+2)-]

nyn-ím   _|_   (_y)2m-n

2[y" + (-y)—]

12. Examples. Let g(i) be a function on [—1, 1] and let us consider the error

Ê g f-l + — ) 2 W(W' W) -   /"' 2(0 *. If g is constant or g«)  = -g(-i),
m-o    \ n I n J-i
then the error is zero, as is true of most rules.
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If we let n — 10 and consider g (/) as <2, i4 and i6 respectively, then the error is

7.7 X 10-4, 4.5 X 10-3, and 1.1 X 10-2 respectively. If we now apply the end

point terms of Theorem 11, the remaining errors are —2.9 X 10~9, —1.8 X 10-8

and —4.2 X 10-8 respectively. If we let n = 14, then the above quoted errors

become 2.8 X 10"4, 1.6 X 10~3, and 4.0 X 10~3 and also -5.5 X 10"12, -3.2 X

10-11 and —8.1 X 10-11. The corresponding errors using Simpson's Rule are 0,

4.3 X 10-4 and 2.1 X 10~3 for 10 intervals and 0, 1.1 X 10~4 and 5.5 X lO"4 for

14 intervals.

If we let g(t) = cos (ttí/4) and n = 12, then the error is -1.7 X 10~6. If we

apply the =^r A4 [g'"(l)  — g"'( — 1)] correction term, the remaining error is

— 7.1 X 10~7. The corresponding error using Simpson's Rule is 6.7 X 10-6.

13. Semi-Infinite Interval. Let us define w(m, co) as lim w(m, n). Then
n-joo

,_      ,       1   . V3
W(0,   co)   = J+-J7J-

and

w(m, =o)  = 1 — - (—x)~m ior m > 0.

/•co

Given a function g{i) for which the integral /    g{t)dt is convergent, one may
Jo

approximate this integral by the expression h 22„=0 w(m, &)g(mh) where N is

sufficiently large that h 23^_.y+i w{m, co )g(mh) is insignificant. If one also knows

the first few derivatives of g (t) at / = 0, one may also add the terms obtained from

Theorem 11.

If g(0  = *"*'i then the series

A f>(m, «o)g(»i,A) - ^Q- A3g"(0) - ~h*g"'(0)
m-0 l¿ I¿V

/.

will converge to  /    g(t) ¿/whenever AX < 2w.
Jo

For some functions such as g{t) = «""', this sequence of derivatives is divergent

for any A > 0. However, this fact does not imply that using this formula with the

first few derivative terms would not do a good job of approximation.

Notice that the weight terms w(m, co) are easy to compute on a machine,

requiring only one multiplication per term.
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