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Table of Integers Not Exceeding 10 00000 That Are Not Expressible

as the Sum of Four Tetrahedral Numbers

By Herbert E. Salzer and Norman Levine

For the past 21 years one of the authors has been concerned with empirical

theorems expressing certain classes of positive integers as the sum of four tetra-

hedral numbers, or "tetrahedrals" T„ = n(n + l)(w + 2)/6, n > 0, the results

being contained in short notes and abstracts, as well as unpublished tables

[1 ]~[9]- We use 2P to denote a sum of p Tn's. Among the more interesting past

findings were : every square < 10 00000 a 24 [7], [8], every Tn < 10 00000 a S4

other than the trivial decomposition Tn — Tn + 0 + 0 + 0 [3], [4], every

multiple of 5 < 1 00000 a 24 [9] (see also [11]), and verification of Pollock's

conjecture that every integer is a 26 for the first 20000 integers [5], [10]. Inci-

dentally all investigations in [l]-[9] were done by hand, employing at the most

a desk calculator.

The exceptional numbers, which by definition are those not expressible as 24,

were tabulated previously only up to 2000. But even that far interesting features

turned up, such as 1314 being the only exceptional number ending in 4, and the

very few ending in 1 or 9 [4]. Then for numbers ending in 6 and < 20000, 6186

turned out to be the only exceptional one [6]. Also there was no striking difference

between the density of exceptional numbers in the first thousand and in the

second thousand brackets, decreasing from around 4|% to 3%, so that it was

interesting to speculate upon the approximate density in the neighborhood of say

10 00000. Then finally, the verification of the conjectures that every integer is

a S5 and that every integer m = 5r is a 24 for the first 20000 cases, while every

lOr + 6, r = 0, 1, 2, • • •, 617, is a 24 until 6186, posed the question as to whether

an exception might occur to either of the former two empirical theorems even

after verification in those first 20000 cases. Thus it was felt that tabulation of the

exceptional numbers < 10 00000 would afford a much clearer picture as to their

distribution and density, as well as stronger evidence for the truth of Pollock's

conjecture and the author's (and Richmond's [11]) conjecture that every

m = 5r is a 24.

This table of exceptional numbers < 10 43999 presents a great surprise in its

picture of their distribution which is entirely different from that envisioned from

those < 2000 [4]. Most strikingly unexpected is the decrease in the density of

exceptional numbers from several percent in the neighborhood of 2000 to what

appears to be practically zero near 10 00000. The scarcity of exceptional numbers

in the higher ranges is in accordance with Hua's result that "almost all" positive

integers are expressible as a 24 [15], [16]. But even more, this table shows that

the likelihood of a given number m being exceptional falls off so rapidly with

increasing m that it appears to be a plausible conjecture that there might be some

Wo sufficiently large such that every m > m<¡ is a 24 (a conjecture unlikely to sug-

gest itself from the exceptional numbers among only the first few thousand).
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Table of Exceptional Numbers < 10 00000

17
27
33
52
73
82
83

103
107
137

1227
1233
1243
1314
1382
1402
1468
1478
1513
1523

3183
3218
3263
3463
3512
3887
4003
4307
4317
4563

9772
9973

10397
10467
10532
10633
10852
11237
11302
11737

29157
29487
29938
30298
31973
33183
36262
36913
37798
38453

153
162
217
219
227
237
247
258
268
271

1578
1612
1622
1658
1678
1693
1731
1738
1742
1758

4832
4923
5013
5142
5238
5283
5483
5508
5538
5563

11962
12247
12547
12722
12777
12843
12858
13127
13393
13822

38707
38807
39693
39913
41278
41322
41433
44833
47627
48043

282
283
302
303
313
358
383
432
437
443

1767
1803
1858
1907
1923
1933
2037
2053
2172
2198

5618
5647
5707
6022
6057
6067
6186
6213
6263
6343

14492
15122
15483
15867
16097
16538
16637
16742
17253
17683

56467
56842
58613
59077
62158
64752
65253
65567
71157
74687

447
502
548
557
558
647
662
667
709
713

2217
2218
2251
2253
2327
2372
2382
2417
2437
2457

6462
6863
7067
7278
7377
7387
7423
7497
7542
7662

17813
17893
18573
18782
19168
19277
20918
21523
22618
22657

78003
78787
83603
84023
85993
91128

1 06277
1 13062
1 34038
1 48437

718
722
842
863
898
953

1007
1117
1118
1153

2537
2538
2578
2687
2818
2858
2898
2973
3138
3142

7793
7873
8223
8307
8322
8973
9063
9488
9687
9753

23677
24237
24317
24338
25447
25723
26007
27858
28617
28847

3 43867
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A quick glance over this table is sufficient to verify Pollock's conjecture for

each of the first million integers. Furthermore, from the absence of any excep-

tional numbers in the range 3 43867 to 10 00000 and from an upper bound to

the magnitude of the first differences of tetrahedral numbers < 2500 00000, it is

easily shown that for any number m between 10 00000 and 2500 00000, it is al-

ways possible to find a Tn such that 3 43867 < m — Tn < 10 00000. Thus every

m < 2500 00000 is a 2$. (This fact and the extreme rarity of large exceptional

numbers makes the empirical theorem of Pollock that every integer is an 26 as

overwhelmingly certain as one can be short of actual proof.) This table verifies

that every m = 5r is a 24 for the first 2 00000 values of r, making it also a very

plausible empirical theorem. In the class of the first 1 00000 values of both

m = lOr + 4 and m = 10r + 6, 1314 and 6186 respectively are the sole excep-

tional numbers. Among the first 1 00000 values of m = lOr + 1, only 271, 1731

and 2251 are exceptional. Among the first 1 00000 values of m = lOr + 9, only 219

and 709 are exceptional. All exceptional numbers m, where 6186 < m < 10 00000,

are here seen to be of the form lOr + 2, lOr + 3, lOr + 7 or lOr + 8, and that

appears to be another plausible conjecture for every exceptional m > 6186.

/i+2\    fj+2\    (k+2\    //+2\
The method of computation was to obtain I J + l 1+1 l + l I

for every i,j, k, I > 0 until one found for every m < 10 43999 either a represen-

tation as a 24 or that that m was exceptional. The calculation was begun upon the

Univac Scientific Computer (ERA 1103) at the Convair Digital Computing

Laboratory, the initial part re-run, and then those results were checked and

continued upon the IBM 704 Digital Computer. At the start upon the ERA 1103,

500 words of high speed storage with 36 binary bits in each word permitted the

investigation of 18000 numbers at a time. Then the IBM 704 had at its disposal

3000 words of high speed memory, each of the 36 binary bits in a word represent-

ing a number, so that 1 08000 numbers could be investigated at one time. The

1 08000 binary bits were filled with l'a at the start, and a 0 introduced into the

binary position of the word which represented a non-exceptional m. After all

possible combinations of i, j, k, I had been exhausted, each of the 3000 words was

searched for binary bits that remained 1 and the exceptional numbers m corre-

sponding to those bits were printed out. In choosing combinations of », j, k, I,

repetitions due to symmetry were avoided, as well as combinations yielding an

m that was either too large or too small for the group of 1 08000 numbers under

consideration.

Those interested in actual mathematical proofs (which appear to be rather

involved) may consult Dickson [12], [13] for earlier work, and Watson [14]

for the sharpest results to date. It is rather amazing that the proved p in m = 2P

for every m is p = 8, and no better than p = 8 for arbitrarily large m, while the

actual p (according to the evidence in this table) may be only 5 for every m,

and 4 for sufficiently large m, less by 3 and 4 respectively. Considering the diffi-

culty of the existing proof for p = 8 [14], one may well wonder, should p = 5 or

p = 4 be the truly minimum values, for every m, and m sufficiently large, respec-

tively, how long the world must wait and how difficult and sharp the mathematical



144 GROUPS  OF  PRIMES  HAVING MAXIMUM  DENSITY

tools must be, until the desired proofs would be found.

References [15] and [16] were called to the author's attention by K. A. Hirsch.
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GROUPS OF PRIMES HAVING MAXIMUM DENSITY

By John Leech

The following lists give groups of six or more primes which minimize the

difference between first and last, the lists being complete for the range 50 to

100 00000. Four numbers out of nine can be prime, such as 191, 193, 197, 199.

There are 897 such groups of four in the range. Five numbers out of thirteen can

be prime; there are 318 such groups in the range. Six numbers out of seventeen

can be prime, such as 97, 101, 103, 107, 109, 113 ; there are seventeen such groups

in the range, centered on :

Received February 7, 1955. Due to misfiling in the MTAC office, this paper is appearing later
than was scheduled; see MTAC, Review 110, v. 11, 1957, p. 274. Some of the results have mean-
while appeared in "On a generalization of the prime pair problem," by Herschel F. Smith, MTAC,
v. 11, 1957, p. 274.


