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1. Abstract. Any finite number m of eigensolutions of a definitely self-adjoint

system of ordinary differential equations may be approximated simultaneously to

any desired accuracy by an iterative procedure and the solution of an (m X m)-

matrix eigenvalue equation. If the method is used with rounded numerical values,

intermediate purification steps are found to be necessary at times; a rule for the

estimation of roundoff errors is established. A simple example illustrates the theo-

retical argument.

2. Definitely self-adjoint problems. Let the nth order system of ordinary differ-

ential equations have the form

4-u(x) = (F(x) + \G(x))u(x),
dx

where u is an n-vector, F and Gin X n)-matrices of continuous functions on the

interval (a, 6), and X the eigenvalue parameter. The boundary conditions considered

have the form

Auia) + Bu(b) = 0,

where i A, B) is a constant in X 2n) -matrix of rank n. The eigenvalue problem

thus formulated is called definitely self-adjoint by Bliss [1], [2], if the following

conditions are fulfilled :

Io. There exists a non-singular matrix Tix) such that

.4- T + TF + F'T = 0
dx

(1) \TG + G'T = 0

AT~\a)A' = BT\b)B'

2°. The matrix S(x) = T'ix)Gix) is symmetric and positive definite or semi-

definite.

3°. If X = 0 is an eigenvalue and u0(x) a corresponding eigenvector, then

u0'(x)S(x)uo(x) j£ 0.

We will replace the last condition by the stronger one:

3'°. X = 0 is not an eigenvalue.

Definitely self-ad joint problems thus defined have at most countably many eigen-

values \i(i = 1,2, • • • ), all real. In the following we assume | X,-1 ̂  | X, |, if i < j.
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The corresponding eigensolutions, denoted by «¿(a:), may be chosen to satisfy the

orthonormalization condition

/.

6

Ui'(x)S(x)uj(x) dx = on .

3. An iteration procedure. Let Vo{x) be an (n X m)-matrix whose columns are

continuous and linearly independent on (a, b). Use Vo(x) as the initial matrix for

the sequence Vi(x) determined successively as solutions of problems

\í Vaix) = F{x)Va{x) + G(x)Va^(x),       {a = l 2    _ _}

[AVaia) + BVa{b) = 0,

and define matrices Qß , for 0 ^ a ^ ß, by

Q» =  [   Va'(x)S(x)Vß-a(x) dx (ß = 0,1, 2, • • • ).
Ja

These generalizations of Schwarz 's constants are symmetric and independent of

the choice of the index a. In this analogy the eigenvalues of the matrix equations

(2) (Q2a^ - KQ2a)t = 0

correspond to the.Schwarz's quotient. Denote the diagonal matrix of its eigenvalues

by Ka and a matrix of corresponding eigenvectors by Ta ; hence

Q2a-lT a   —   Q2aTaKa   =   0.

4. Theorem on convergence and its rate. Assume first the following conditions :

(a) Vo(x) is arbitrary in the sense that no linear combination of its columns is

orthogonal to the first m eigensolutions ?¿¿(x) (i = 1, 2, • • -, m), (b) The first m

eigenvalues are smaller in absolute value than all others, i.e. | X„, | < | Xm+i |. Then

the sequence of the solutions of (2) provides successive approximations tending to

the first m eigensolutions of the original problem:

// the eigenvalues of Ka are ordered and the vectors Ta normed properly, then the

former ones converge to X¿ (i = 1, 2, • • -, m) and the column vectors of

(3) Va(x)Ta

to Ui (i = 1,2, • • •, m) as a —> °°. The rate of convergence is such that the ith eigen-

value as well as all components of the corresponding vector differ from their respective

limits by amounts 0( | X¿/Xm+i j ").

The convergence theorem has been proved under more general conditions in the

author's papers [3] and [4]. There it was found for instance that if the condition

about the generality of V0(x), expressed in (a), is not satisfied but some among the

m first eigensolutions of the original problem are orthogonal to linear combinations

of columns of Vo(x), then convergence still prevails, the limiting eigenvalues and

eigensolutions of the process are just replaced by some others, associated with the

next smallest eigenvalues. Again, if condition (b) above is not fulfilled, then the

convergence still occurs with respect to eigenvalues with smaller absolute value

than ¡ Xm+i | and to the corresponding eigensolutions.
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The rate of convergence is not discussed in the previous papers; the error esti-

mate is, however, obtainable from the proof in the latter paper by quite straight-

forward considerations.

5. Rounding off errors. In order to have an estimate of the effect of rounding off

errors of the Q's, unavoidable in numerical computation with truncated values, dif-

ferentiate the eigenvalue equation (2),

(dQ2a-i — KdQ2a)t — di<Q2J + (Q2a-i — kQ2„) dt = 0.

Multiplication from left by t' and division by

(4) t'Qïa-l t   =   Kt'Q2a t

gives, observing the transposed form of (2), the final formula

,-■> die _ t'dQ2a-i t _ t'dQ2a t

K        t'Q2a-i t       t'Q2a t '

Let A and U(x) be the diagonal matrix of eigenvalues X, and the matrix of cor-

responding eigensolutions Ui(x), respectively. Moreover, let C, defined by

C =  f   U'(x)Six)Voix) dx,
Ja

be the matrix of coefficients in the expansion of Voix). Then any V„ix) (a = 1,

2, • • • ) has an absolutely and uniformly convergent expansion

Va(x) = Uix)A-"C.

The condition (a) above is equivalent with the statement that the top square

submatrix C\ of C, formed by its m first rows, is non-singular. Partition C and A

as follows,

Va/ \ o a2

where Ci and Ai are (m X m)-matrices and use the abbreviation

^2/      \A2_2°C21)

for the coefficient vector in the expansion of an approximation

V2at = UA~2aCt = Up.

In the proof, previously mentioned, it has been shown that when a increases indefi-

nitely the coefficient vector p, provided the eigenvector t of (2) is chosen and

normed properly, tends to a limit vector all of whose elements vanish with just

one exception; this element, the ith, is among the first m and may be assumed to

be 1. Moreover, the convergence is such that the deviations of the elements of p

from their respective limits are of the magnitude 0( | Xi/Xm+i |2°). Of course, the

finite vector pi has the same properties. Hence, if ew(,) is the notation of the m-vec-
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tor whose ith element is 1, all other elements 0, then the vector pi at the ath stage

has the expression

Px = em(,) + I X¡/Xm+i \2aaa ,

where a„ is an m-vector bounded for a —> «.

Express now t in terms of pi :

t = CrVîh = Ci-%t*memt? + ! X¿/Xm+i fVaJ

= C\   X»   [em     + [ Xm/Xm+i |   ba\,

where ba is also an m-vector bounded for a —> oo. In order to estimate the right

hand side terms in (5), i.e. quotients of the form

(7s t'dQß t

K> t'Qßt'

consider first their denominators. Qß has an expression

Qß = C'X~ßC = Ci'Ar'Ci + C2'A2~ßC2

and therefore, for the particular value ß = 2a,

t'Q2at = pl'Ai"Ci'-l{Ci,A1-amCi + C2'A2-2<"C2)Cr1A,2>1

- Pi'Ai2>i + p1'A12"C1'-1A2-2aC2Cr1A12>i

= [emlî)' + | Xi/Xm+1 faa'WV + Ci'-lC»,A,-*mC&-*Ai*\

X [ejl) + | Xt-/Xm+1 \2aaa'].

Since the second term in the second bracket decreases at least like | Xm/Xm+i | ",

the total product obviously has the asymptotic expression X¿2a. By (4) one finds

that the asymptotic expression for t'Q2a-it is X¿2<*+ .

Using (6), the numerator of (7), for ß = 2a, is clearly approximated by X¿4a

multiplied by the ith diagonal term of Ci'~ dQ2aCx, as a increases. If Ci is arbi-

trarily chosen, that is, if Vo(x) is originally arbitrary, then the order of magnitude

of this diagonal term is determined by the product of Xi~ ", which determines the

order of magnitude of all elements in Q2a , and a proper measure of the relative

rounding off error in the elements of Q2a, say 5. Hence, for an arbitrarily chosen

Vo the quotient (7) has, for ß = 2a, the order of magnitude

\4at-.   — 2a
i   A:

wX,2a

The same estimate is, of course, also valid for ß = 2a — 1. For an increasing a

the effect of the rounding off error in the approximations k{ for X< with an absolute

value less than | Xi | will accordingly increase indefinitely even if the relative mag-

nitude of the rounding off error should remain bounded.

On the other hand, if Ci is almost diagonal, then the ith diagonal term of

Ci'_1(iQ2aCi~ has the order of magnitude X,~ "& and the quotient (7) the order of

magnitude
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In this case F0 consists of columns already almost equal to the first m eigensolu-

tions and the method gives all eigensolutions with an approximately equal accuracy.

If the condition (b) is not fulfilled, i.e. some of the first m eigenvalues are equal

to some later eigenvalues in absolute value, then the above statements are still

valid regarding those eigenvalues whose absolute values are smaller than | Xm+i |.

6. Practical use of the method. After an initial matrix Voix), i.e. any set of m

linearly independent trial vectors vo^\x), has teen assigned, one has to solve m

independent boundary value problems

\^v^(x) = F(xWi)(x) + G(x)vo{i)(x),
(8) {dx (i = 1,2, ••■ ,m).

[Av^ia) + BVl(i\b) = 0;

The solution vectors Vi'\x), i = 1, 2, • • -, m, form the matrix Vi(x). Usuallyit is

already advisable after this first step to improve the initial matrix for the next

step. To this end the matrices Qi and Q2 are formed from Vo and Vi, the corre-

sponding eigenvalue equation (2) solved and Viix) replaced by the product Vi(x)Ti

from (3). It is true that the procedure gives theoretically completely equal results

whether continued with Viix) or V\(x)T\ as the next initial matrix. However,

there may be a substantial difference in the practical results, due to the fact that

the top square submatrix Ci of the coefficient matrix C related to the latter is usually

much closer to a diagonal matrix and the effect of rounding off errors accordingly

decreased.

This effect may be estimated at any stage and for any eigenvalue by evaluating

quotients (7) on the right hand side of (5). The denominator hereby may be com-

puted directly after the eigenvector t has been determined ; the order of magnitude

of the numerator may be obtained by replacing dQ, for instance, by the positive

diagonal matrix whose diagonal elements are the estimated positive rounding off

errors of diagonal elements of Q.

If the fractions (7) are small, then, of course, several iteration steps like (8)

may be performed without needing to interrupt the process for an intermediary

purification step.

Finally it may be observed that if one wants to determine the first m eigensolu-

tions, then it might be useful in some cases to carry out the computations with a

larger number m! > m and the excessive least accurate ml — m solutions related

to the largest eigenvalues may be omitted at the end.

7. Comparison with the customary method. If more than just the lowest eigen-

value is needed, then the customary iterative method computes the wanted eigen-

values successively in the order of increasing absolute value. Hence, the steps con-

sisting of integrations of boundary value problems of type (8) are equal in the cus-

tomary as well as in the described method. The orthogonalization steps which are

necessary at times in the former method in connection with higher eigenvalues have

their counterpart in the purification steps of the latter method. These intermediary

steps, involving solution of auxiliary eigenvalue matrix equations, generate addi-

tional computation. The associated extra work is, however, mostly outweighted by

following advantages.
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If the approximate eigenvalues are interpreted as minimal values of functionals

of Rayleigh-Ritz type, then the present method bases its trial functionals at each

step on linear combinations of m vectors instead of one vector. Accordingly all

results are obtained, after some number of iterations, with substantially greater

accuracy than by the method based on the use of one vector for Xi, two vectors

for X2, etc.

Furthermore, separation of two or more eigensolutions associated with eigen-

values of almost equal absolute values is established automatically, whereas this

case is always quite troublesome by methods which proceed with one vector at a

time.

8. An example. To illustrate the described method consider the simplest possible

problem:

'-G ;)■ "-(-. !)■ '-(; î). *-(s ;)•
The solution T of ( 1 ) and the corresponding S are easily found to be

r = (-i   o)'      s = (o   o)-

Moreover, the conditions 2° and 3'° are fulfilled. Hence the problem is definitely

self-adjoint.

In order to find the first two eigensolutions take for instance a = 0, b = 1 and

choose

*-G ;)•
Solving (8) for the two corresponding column vectors results in

I /&x — 3x    3x — aA

6 \ 6 - 6a;     3 - 3a:2/

25^ o       _L/672    427\
16/ '       y2      5040 \427    272/ '

The eigenvalue equation (2) with a = 1 gives now the eigenvalues,

= 846 + 96V5T = Í2.4680
K 65 \23.563 '

and the eigenvectors

T   =(        2 2       \
1      V4 + V5Î    4 - a/öT/ '

A second iteration step, based on the immediate use of Vi, gives the matrix

V   ■    — (^x ~ 20x  + 5x*     25x ~ l0x  + x\

120 \40 - 60a;2 + 20a;3    25 - 30x2 + 5a;4/ '

Vi

and the matrices

¿1      120 \2
>ä
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The corresponding matrices Q3 and Q4 are

_1_/19584    12465\ _1_/872960    55573l\

y' ~~ 362880 \12465     7936/ ' ^4 ~~ 39916800 \555731     353792/

and the solutions of (2) with a = 2:

10496290 + 6400V1725010      f 2.46740208

(

847269 \22.3093571

2062_ 2062_\

3328 + 5a/1725010    3328 - 5-^1725010/

The relative errors of these approximations of Xi and X2 are 4 • 10~ and 4 • 10~ ,

respectively. This accuracy is, however, possible only by using untruncated values

of the elements of Qd and Qi. This may be seen by computing the ratio (7) for

instance with Q4 in the denominator and 10~ • I as the kernel dQ in the numerator.

Inserting for t the first or the second column of T2 one obtains 7 • 10~ or 5 • 10~ ,

respectively. Since the elements of Q4 are of the order of magnitude 10~2, this result

shows that truncation of the elements of Q4 by 10~ causes at the first eigenvalue

an error of the same magnitude but at the second eigenvalue an error 10_1. In fact,

this result can also be obtained by a direct computation. If the elements of Q3 and

Qi are truncated to about 6-place values,

02186949    0.01392223\

01392223    0.00886324/

_ /0.0539683     0.0343502N /0

^3 ™ \0.0343502    0.0218695/ '       Qi " \0

then the following eigenvalues are found for (2):

Í2.46740277

(21.669

The error caused by this truncation into the first and second eigenvalue is hence

at the eighth and at the second place, respectively.

If on the other hand the second iteration step is made by an improved matrix,

taking

IV = F, Ti

1 /24j; - 6.r2 - 4x3 + y/5Î(3x - x3)    24a: - 6x2 - 4a;3 - V5Í(3.x - x3)\

~6 \24 - 12a; - 12.x2 + 3VoT(l - x*)    24 - 12.c - 12x2 - 3\/5T(l - x2))

as initial matrix, then the corresponding new vector matrix is

'l80x - 80x3 + 10x4 + 4a;5 + \/5Ï(25x - lOx3 +x)

180a; - 80x3 + lO.r4 + 4x5 - \/5Î(25a; - 10a;3 + x5)

180 - 240a;2 + 40.x-3 + 20.c4 + 5\/5Î(5 - 6x2 + x4)

180 - 240x + 40x2 + 20x4 - 5y/EÏ(5 - 6x2 + x4)y

120
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Related kernel matrices are

0 „ =       1     /202372 + 28337\/oT 4 _\

y'    = 90720 \ 4 202372 - 28337 \/5Î/ '

0 * =     _1_/3007300 + 421105\/5Î 68 __\

^4    "3326400 V 68 3007300 - 421105\/51/ '

and the corresponding solution of (2) :

. 10496290 + 6400\/l725010 = /2.46740208

K 847269 \22.309

T * = (    1 -0.0000115\

2        \0.1212 1 /'

In this case the truncation of the numerical values of the elements of the Q's

does not produce essentially greater error in the second eigenvalue. This may be

seen by computing the characteristic quotients (7): t'Q*t, by inserting the second

column of T2* ; this gives ~3 • 10~~ and, if dQ* is taken to be the diagonal matrix

containing diagonal elements of Q* multiplied by 10~6, then t'dQ*t is ~3 • 10-12,

hence the order of magnitude of the relative error of k is 10~ . And actually, if the

elements of Q* and Q* are truncated to about 6-place values,

/    4.46140        4.40917-10-5\ /    1.808138        2.044252-10"

\4.40917-10-0   5.88913-10-5/ \2.044252 10-5   2.639971 • 10-6

then the following eigenvalues for (2) are found to be:

2.4673997.
22.3093475

The relative errors due to the truncation of the elements of the matrices are hence

10_ and 5 • 10_ , respectively.
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