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It is well known that in many problems of hydrodynamics one cannot, at the pres-

ent time, obtain valid solutions in a closed form. The asymptotic behavior of the

solutions and even more generally their qualitative properties are barely obtainable

through analytical work alone. This is even true of some problems which are al-

ready highly schematized by neglecting various physical parameters, like the change

in the equation of state in a fluid or gas during its motion. One proceeds in numerical

computations with the continuum of the fluid replaced by a finite network of dis-

crete points, and ihus replaces the partial differential equations by a system of dif-

ference equations. The time variable, too, is replaced by a discrete succession of

steps in time. This is the usual procedure in solving initial value problems which do

not yield to analytical methods. In recent years the advent of electronic computing

machines introduced the possibility of large scale experimentation in calculation of

problems in more than one dimension.

It is the purpose of the following discussion to outline some general properties of

such numerical work and to propose several different methods for numerical compu-

tations. Some numerical work already performed will be discussed in the sequel; it

dates from 1952, when the authors first applied such computations on electronic

computing machines. More recently, F. Harlow [1] has applied similar methods to

calculations performed on electronic machines in Los Alamos. With the constant

improvement in electronic computers, both as regards their speed and the size of

the memory, it will be possible to perform more ambitious calculations; both the

variety and the magnitude of the problems which can be handled will increase. Such

calculations can play a role analogous to that of experiments in physics and may

suggest new theoretical lines of attack.

There are, broadly speaking, at least two different ways to approach numerically

the problems dealing with the dynamical behavior of continua. The kinetic theory

of gases assumes the physical reality of the discontinuum. One calculates the proper-

ties in the large of the motion of N "points"—atoms or molecules which have sta-

tistically given velocity distributions and are subject to incessant collisions with

each other. There are forces acting between these points, e.g., deriving from poten-

tials, but whose form is only imperfectly known. Many, but not all, properties of the

macroscopic motions are largely independent of the exact form of the interactions

between these particles. This is not the place to enter into a description of the way

to derive the hydrodynamical equations from the Boltzmann integral-differential

equations describing the microscopic behavior of such systems. Suffice it to say that,

e.g., Navier-Stokes equations can be so derived and they will describe the behavior

of certain statistical averages (or functional on the &N dimensional space) which are

interpreted as macroscopic quantities like density, pressure and velocity, of a point

in space (three dimensions) as functions of time.
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What we prefer to discuss here briefly is the numerical procedures which are sug-

gested by this model. The number N is, in problems of hydrodynamics, enormous.

N is greater than, say, 1022 for lcc of liquid. Is it possible to scale down this number

to a value practical for numerical computations and still be able to observe mean-

ingfully the behavior of the functionals in which we are interested?

The answer, it seems to us, is in the negative at the present time. If one takes

the Boltzmann equations literally and considers the individual points of calculation

as representing atoms, then to obtain the "average" velocity of a point of the gas

one would require, say, k particles per cell in a spatial resolution in which we are

interested. Let the number of cells be I. (In practice, the resolution equals dona

linear scale and I equals of; where r is the number of dimensions, and equals 1, 2,

3 (in problems in one, two, or three dimensions without special symmetries reduc-

ing the number of independent space parameters).) The total number of points is

then ê = kdT. If we want a statistical error of the order of 1%, then k ~ 10 . If the

linear resolution is to be of the order of 5%, say, then d is 20. Even in one dimen-

sion, we would have to consider 200,000 points. This is much too high for present

computers and should make it clear that in a numerical calculation, the "points"

have to be thought of as representing not individual atoms but rather large aggre-

gates of atoms. The behavior of each point has to be schematized so as to represent

a statistical average of a great number of atoms. The numerical work will not reflect

the Boltzmann equations, but the simpler equations which are its consequences;

each point of our calculation represents, for example, the center of mass of a collec-

tion of atoms. The implicit assumption in this set-up is, therefore, that such a mass

remains coherent during the entire course of the problem. That is to say, the mole-

cules initially close to each other remain so throughout the problem and do not

diffuse too much with respect to each other—the small globule of the fluid does not

distort too much.

Parenthetically, we may add that this question is connected with the whole com-

plex of difficulties which one encounters even in the purely mathematical studies

in the theory of functions of several real variables. The so-called density theorems

and the notion of set-derivation can serve as examples: The density of a set of points

at a given point has to be defined through a sequence of sets such that not merely

their diameters shrink to zero, but the sets have to be "not too thin"—for example,

in case of rectangles enclosing the given point, the ratio of the sides has to remain

bounded. This sort of assumption is necessary for the validity of Vitali's theorem,

etc. Physically it is clear that in our case we have to assume that the surface-to-

volume ratio for the globules has to remain bounded for any a priori evaluation of

the pressure, which acts on its center of mass. One has to introduce pressure, and

there seem to be at least two obvious ways to do it :

a) Assuming the knowledge of the equation of state, there is the dependence of

the pressure on local density (we assume as given the thermodynamic nature of

the process). In this outline we may specialize, say, to either an isothermal or adia-

batic process, that is, p = f(p). The pressure gradients which are évaluable through

gradients of density will be calculated then by estimating these gradients through

the geometry of the instantaneous appearance of our system of points which repre-

sent, we emphasize, the positions of centers of mass of globules. Our problem, then

is that of finding a rule or recipe to estimate the density at a point of space given
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only a finite system of points (rather widely separated!). The limiting case of an

enormous number of points presents no difficulties, for one could simply count the

number of points in a square of a fixed mesh, and this number will be proportional

to the density. In practice, since we are limited to a moderate number of points

for the whole fluid, the question is to estimate the density in the most reliable way.

Consider the case of two dimensions. We can think of the points located initially

in a regular array, for example, on the vertices of a rectangular division, or better,

points of a triangular subdivision of space. Of course, after some "cycles" of the

computation, the geometry of the system will change and one could proceed to

estimate the density as follows: Enclose each point by triangles with the closest

points as vertices. The smallest (in area) triangles in whose interior a given point

is located would give, through the ratio of its area to the area of the original tri-

angle, at least an idea of the change in density at that point.

This procedure suffers from several drawbacks. There is the question of the com-

putational stability of the calculation. The selection of the nearest points leads to

discontinuity, in time, of the area. In a rectangular subdivision the more "classical"

definition of density through the Jacobian in a finite approximation requires the

knowledge of the position of four nearby points x =fc h, y ± k. In the equations of

motion for each of our points, we need the gradients of the density in the Lagrangian

coordinates (the "a,b,c" not the "x,y,z"). In our crude way of calculating the den-

sities themselves, the computation of differences in fixed directions in space at a

given time, the nearby points for increasing a,b,c may not be sufficiently close, and

the gradients may be very inaccurately estimated. In the case of points in the

boundary of the fluid, say with vacuum, one needs special prescriptions. All this

introduces even more serious errors.

b) There is another way to introduce, numerically, the forces due to pressure

gradients. We could imagine repulsive forces acting between any pair of our points.

They would in simple cases depend on the distance alone (the forces should derive

from potentials if we assume scalar pressure—no tensor forces—no viscosity, etc.).

The form of the potential will, of course, depend on the equation of state. In a one-

dimensional problem the nature of this correspondence is clear—it suffices to have

forces between neighboring points only. The continuity of motion guarantees the

permanence, in time, of the relation of neighborhood. The situation is however

completely different in two or more space dimensions. (A general remark here: In

one-dimensional problems the points of our calculation can best represent the

boundaries of zones into which our fluid or gas is sub-divided. These keep their

coherence and shape, and the only meaningful parameter for the spatial distribution,

the density, is inversely proportional to the width of the zones. In two or more di-

mensions the boundaries of zones are not easily describable by points or systems

of a few points, and these points, we will repeat once more, correspond to centers

of mass of volume.) We have to define the neighbors of a given point. One can do

it in reference to the original geometry of a system of points that is to keep the

relation which existed initially. But this is not good except in the case of infinitesimal

or small deformation. The neighbors of a given point will change in the course of

time. If one tries to calculate the resultant force on a point by calculating it from

all the points in the mesh, not merely the neighbors, one should remember that the

number of calculations increases with the square of the number of points. A "cut-
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off" for the force is necessary at some distance and the force is not calculated if

the distance between two points exceeds a certain constant. One has to remember

that in the initial position, that is to say, in the regular lattice in which the points

are arrayed, the cut-off has to be selected so that with it we obtain the initial dis-

tribution of pressure. The pressure gradient is given directly as the resultant of all

the forces acting on a point from its "neighbors" and depends on the actual posi-

tion of the point without reference to the ("forgotten" by the system) initial con-

figuration. We will discuss in the sequel, for some concrete problems, how such cal-

culating schemata operated.

To summarize briefly the above computational scheme: The particles represent

small parts of the fluid. The forces due to pressure gradients are introduced directly

by imagining that neighboring or "close" points repel each other. The dependence

of this force on the distance between points is so chosen that in the limiting case

of very many points, it would represent correctly the equation of state. That this

is possible, in principle, is clear a priori : the density is inversely proportional in the

limit of a very large number of points to the square (in two dimensions) or cube

(in three dimensions) of the average distance between them. The pressure is a

function of density, and this being a function of the distances, we obtain an ana-

logue of the equation of state by choosing a suitable distance dependence of the

force. The Lagrangian particles are at Pi:(xi ,yx ,zL), P2:{x2 ,y2 ,z2), •••, Pa'-

(xN ,2/jv ,zn). The forces (repulsive) between any two are given by Fi,¡ =

F(d(Pi ,Pj)) where d(Pi ,Pj) is the distance between the two points.

The average value of ci at a point of the fluid is, in the limit of N —> °°, a func-

tion of the local density: d £b¡ p_1/3.

The pressure p is a function of p alone in, say, isothermal or adiabatic problems.

The pressure gradients give then the expression for our F.

There is so far no general theory and the convergence of such finite approxima-

tions to the hydrodynamical equations remains to be proved, but even more im-

portant than that would be an estimate of the speed of convergence.

One could assume, as a starting point for a numerical calculation, instead of the

partial differential equations of hydrodynamics, e.g., the equations of Euler-La-

grange, a mathematical description which is somewhat more general: the "points"

of our calculation need not correspond to the material points of a fluid, but instead

may represent—more generally—some other parameters of the problem.

After all, in many problems one is not interested in the positions of every given

particle of the fluid, but rather in the behavior, in time, of a few functionals of the

motion; for example, if a,b,c are the "laboratory" or Lagrangian coordinates in

fixed space in the classical formulation, one deals with the functions x(a,b,c,t),

y(a,b,c,t), z(a,b,c,t) which are interpreted as a position at time t of the point which

at time t = 0 occupies the point (a,b,c). p(x,y,z,t) is the local density which is

computed by differentiation from the knowledge of x,y,z and the derivatives

dx  dx  dx  dy

da'db'dc'da

The pressure p is, for our purpose, computable from p. It is always possible to

think of the functions x,y,z (which satisfy the Euler-Lagrange equations) as devel-

oped into series:
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z = X) otijk(t)4rijk(a,b,c)        z = Y^ynkit)^nkia,b,c)
i,3,k i,j,k

y = J2 ßijkit)^ijkia,b,c) i,j,k = 1,2, • • •

Here the i^'s are fixed functions of a,b,c alone. The functions need not form orthog-

onal systems but, to fix the ideas, we might think of them as being terms of the

Fourier series of Rademacher functions, for instance. The a,ß,y are functions of

time alone and can be treated as abstract Lagrangian particles. The partial differ-

ential equations for x,y,z are replaced by a system of infinitely many (a discrete

infinity) of ordinary differential equations describing the change in time of the

a,ß,y. To see the validity of such an approach, we shall illustrate this proposal in

an example.

In a one-dimensional problem, we have to find the function x(a,t) satisfying the

equation

x=-f-Fix);   p=fiP);   p = £-
ax dx

da

with a given initial distribution of density and velocity of the fluid. The ordinary

numerical procedure for a solution consists in the replacement of the continuous

variable a; by a discrete one, that is, xia) is replaced by x¿ i = 1, 2, ■ ■ ■ N. Each

Xi obeys a Newtonian equation of the second order for the x,-(i) where in practice

we also replace t by a discrete sequence of times and obtain a system of difference

equations. Our introduction of the fixed functions of space ip(x) and the a/s amounts

to a Lagrangian change of variables where instead of the x¿ which are the actual

"points" of our fluid, we introduce new variables (q/) in Lagrangian notation:

?i = q\(x\ ■ ■ ■ xn),        q2 = q2(x! ■ ■ ■ xn) • • ■ qk = qk(x\ ■ • ■ x„)

where the functions are "holonomic", that is, they do not involve the velocities x¡

in a non-integrable form. For example, the analogue of the Rademacher functions

would be: If n is of the form n = 2

n/2 n

q\ = S Xi: — X) Z¿
£=1 ¿=(n/2)+l

n/4 n/2 (3/4)n n

q2 = /. X{ / .      X{ -\-       / ,      Xi / .      Xi
¿=1 t-=(n/4)+l ¿=(n/2)+l i-(3/4)n+l

The differential equations for the x, will be replaced by a system of equations for

the c»- ; the forces which are given directly for the x variable by pressure gradients

will be replaced by "generalized" forces which are functions of the #, and their

derivatives. In cases where the ^ form an orthogonal system, the kinetic energy

will still be a quadratic function of q{ and the a(. This procedure is, of course,

strictly legitimate in the case where we consider the x variables being expressible

by the ç,-.
A general question arises: Which, in a given problem, are the most convenient

variables (g)? It is clear that in man}' problems of hydrodynamics one is interested
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mostly in certain over-all properties of the motion of the fluid—one wants to

know the behavior of certain given functionals.

In the classical approach one calculates first the x,y,z for each of the points of

the space a,b,c. In practice, one is limited to a finite number of these points, and

it is perhaps plausible that in many cases it would be "better" to know, instead,

an equal number of coefficients a<# in the development of x(a,b,c,t) in a given

(Fourier) series than to know the value of x in a corresponding number of points

in the space of the a^k's. This is especially clear if one should know, a priori, from

the physical nature of the problem that the functions x,y,z are reasonably smooth

(e.g., in the sense that the absolute value of the partial derivatives remains

bounded). In the terminology of the a.yt's, this smoothness amounts to the knowl-

edge that the coupling between the a's which have high indices and those with

small values is small. That is to say, the series converge rapidly. Physically speak-

ing, it means that the high frequencies are less excited.

Such reduction of a continuum to a discrete countable infinity is, of course, very

familiar in some problems of quantum theory—the radiation field, etc. The prob-

lems that have been dealt with in quantum theory have been mostly linear; there

are no forces between the coefficients and each mode or "particle" represented by

the coefficients behaves independently of all the others.

For the case of our hydrodynamical problems, the forces due to pressure gradient

are functions of all the coefficients; that is, we have a true n-body problem, and

the "quantization" is justified practically only if a cut-off at a finite index (i) is

permissible together with an estimate, in advance, of the error for all t under con-

sideration—that is to say, if the high modes do not become increasingly important.

When the high modes do acquire more energy as time goes on, the classical approach

becomes difficult also. The onset of turbulence or of the positional mixing of the

fluid renders the classical treatment (partial differential equations) illusory. The

absolute values of spatial derivatives increase and even their existence for finite

times cannot be guaranteed and a statistical approach is indicated. It would seem

that in problems where this behavior is expected, the approach through a study of

a finite model involving perhaps a change of coordinates, like the one proposed,

may be of possible utility. If one wants to study the rate of development of insta-

bilities or the rate at which mixing proceeds, then the flow of energy from the low

modes (that is to say, from the a's with small indices to those with high indices)

will show just the rate of increase in mixing positionally or, in the derivatives, the

rate of increase in vorticity.

We would like to mention another possible advantage in the use of general coor-

dinates in numerical work. A description of the motion of the fluid through the

partial differential equations of hydrodynamics postulates the existence of the par-

tial differential expressions. It is well known that even in comparatively simple

problems these derivatives exist only up to a finite value of time, after which dis-

continuities develop, e.g., in pressure and in density (that is to say, shocks), and

one has to use different methods to treat such discontinuities. On the other hand,

a Rademacher series or Fourier series may very well represent a step function,

more generally functions without derivatives at some points. The a{ might then

continue to be used as dynamical variables even after discontinuities occur in de-
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Fig. 1.—Initial configuration, t = 0

rivatives like dx/da making the differential expressions in the Euler-Lagrange equa-

tions unmanageable.

In order to test some of these general speculations on actual problems, we have

run some numerical computations on an electronic machine, the MANIAC, in the

Los Alamos Scientific Laboratory and on its prototype at the Institute for Advanced

Study in Princeton. The main purpose of these calculations was exploratory, and

the feasibility of using certain numerical schemes on the machine was considered

of more interest than the precision of the results. The main point of interest was

the amount of time necessary in order to compute on the machine the time behavior

of certain functionals of our systems. The problems were mostly of the initial value

type, the integration was in time, and the calculation ran in cycles, for which we

decided that about five minutes would be allowed. The nature of the problems and

the characteristics of the machine with this requirement fixed the maximum num-

ber of mass points at about 256. The first problem studied involved the motion of

a heavy fluid on top of a lighter one—usually known as the Taylor instability con-

figuration.

The initial configuration was the 16 X 16 array shown in Fig. 1. The particles

are of two types, one having a mass which was double the mass of the other. The

force was the same between any two particles and was chosen to be inversely pro-

portional to the distance of separation. This algebraically simple choice was made
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mainly to keep the computation time to a minimum. The whole system of particles

is enclosed in a unit square with the heavier particles on top and all particles sub-

ject to an external gravitational field, an unstable configuration. With our simple

force law the computation for each pair of particles took about 30 milliseconds.

With our 256 particles, or over 32,000 pairs, the computation of resultant forces

would have taken 15 minutes. This time can be reduced by introducing a cut-off

in the force so that for a particle lying outside such range of influence, the only

computation necessary is that of a separation between the particles. In order to

avoid even such computations of distance which involve the long multiplication

time of the machine, we arranged the cut-off in terms not of the Euclidean metric,

but in terms of another one (Minkowski): the sum of the horizontal and vertical

distances of separation thereby reducing the time of ascertaining the distance in

such case to about 3 milliseconds for these pairs. With this, the total computation

time (for a cycle) was about 5 minutes, and a typical problem would run 150 cycles

—all together, with printing of results, somewhat more than 10 hours.

When a particle approached the side of the container closer than a cut-off distance,

a special situation arose. The most convenient way of treating the wall was to

create a virtual particle located on the wall at the same horizontal or vertical posi-

tion as required to contain the real particle. Again we should emphasize that for

our first experiments, this recipe was chosen for computational conveniences rather

than as a mathematical or physical requirement. Thus, also, all the parameters for

the problem were chosen to be simple powers of 2 so as to be able to use the fast

operation of the left and right binary shift, rather than the slower operation of

direct multiplication.

With our grid of points, crudely as it was chosen, it hardly can be expected that

the details of the motion will be exactly described. A typical configuration is shown

in Fig. 2; a much later cycle (later time) configuration is shown in Fig. 3 and the

formation of the "atmosphere" is apparent. What can be hoped, however, is that

some functionals of the motion will be more accurately depicted. We are interested

in the transition phase and in the time rates of mixing on a large scale between

the two fluids. One of the functionals which we observed and plotted as a function

of time is the total kinetic energy of the particles divided into two parts: the kinetic

energy of the horizontal and vertical motions separately (these are shown on Fig.

4). Even though the motion itself is very irregular, these quantities seem to present

rather smooth functions of time. In the case of a stable configuration with the lighter

fluid on top and the heavy fluid on the bottom, there would be only a periodic

interchange of kinetic and potential energies.* In the unstable case, there should

be an increase of kinetic energy which persists for a considerable time. The hope is

that with many more calculations one could try to guess from such numerical re-

sults at least the form of an empirical law for the increase of this quantity as a

function of initial parameters.

Another quantity of interest is the spectrum of angular momentum which may

be defined, for example, in the following way: we draw around each particle a circle

of fixed radius and calculate the angular momentum in each such region. We then

* See Fig. 5, showing the configuration at a time later than the one in Fig. 2.
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take the sum of the absolute values or the sum of the squares of these quantities.

This gives us an over-all measure of angular momentum on a scale given by the

radius. Varying the radius, these numbers may then be studied as a function of

both time and the radius. It is interesting to consider the rate at which the large

scale angular momentum is transferred to small scale eddies—also, the spectrum

in the asymptotic state, if it exists. All this, of course, as a function of the param-

eters of the problem, the ratio of the densities of the two fluids and the external

force. It is clear that very many numerical experiments would have to be performed

before one would trust such pragmatic "laws" for the time behavior of mixing or

increase in vorticity.

Another reason for selection of our problem was an interest in the degree of spa-

tial mixing of two fluids, starting from an unstable equilibrium. To measure quan-

titatively such mixing in configuration space, a functional was adopted similar to

.the one just mentioned for the spectrum of angular momentum. At a given time t,

a circle is drawn around each point P. In each circle, we look at the ratio r of the

number of heavy particles to the total number of particles in this region. We take

the quantity p(P,t) = 4r(l — r). This gives an index of mixing of the fluid in the

circle, being equal to zero if only one fluid is present and equal to one if particles

of both fluids are equally present in it. We average this quantity over all the cir-

cles. Initially this average is very close to zero, the only region where it differs from

zero being around the interface. As the mixing proceeds, our average measure of

mixing increases with time. We have plotted this quantity for several different radii.

These functions are again comparatively smooth even though the interface be-

tween the two fluids becomes highly convoluted. Again, one might expect that

after a sufficient number of numerical experiments, one would obtain a hint of

the time behavior of this "mixing functional", or at least an idea of the time T

taken for the over-all mixing (which is initially close to zero) to become of the

order of \ or 1/e, say. This time, for dimensional reasons, must depend on \fhfa

where L is the depth of the vessel and a the acceleration of the lighter fluid into

the heavier one.

The problem of Taylor's instability in its initial stages was also examined in Los

Alamos experimentally for the case of a heavy gas on top of a light gas. The inter-

face between the two gases involved an irregularity. Photographs taken at various

times show configuration of the two gases not unlike those developing in our cal-

culation. If one wanted to put credence in calculations like the above, the form of

the proper force law imitating the real equation of state would have to be chosen

very carefully. Also one would have to study the question of how the accumulation

of error due to the finiteness of our grid will effect the behavior of our functionals.

We have treated compressible gases. An attempt to treat numerically incompres-

sible fluids in a similar way encounters serious additional difficulties:

In order to preserve the volume of each fluid element, one would have to keep

constant the areas, in two-dimensional problems, of triangles or other elementary

figures whose vertices are occupied by our particles. This means that there is a

great number of constraints added to the equations of motion for the repelling mass

points. This was computationally not feasible on the available machines for prob-

lems where the number of points was of the order of 100 or more.
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Another way of calculating in the above spirit would have been to postulate addi-

tional forces, doing no work but strongly tending to preserve the elementary area

defined by our mass points. This also turned out to be impractical.

Atomic Energy Commission, Washington, D. C. and
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

1. M. W. Evans & F. H. Hablow, The Particle-in-Cell Method for Hydrodynamic Calcidations,
Los Alamos Report 2139, 1957.


