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1. Introduction. Many methods have been proposed and used for the computa-

tion of real roots of equations in a single real variable. Notable among these is

Newton's Tangent Method. However, this procedure is quite costly in many in-

stances wherein the function of which the zero is desired is inordinately compli-

cated; indeed, it is usually the case—polynomials and other simple functions

excepted—that derivatives are more complicated than the functions themselves.

This last circumstance constitutes the principal motivation of later methods, such

as the one given in [1], that are based solely upon evaluations of the functions

themselves. To our knowledge, none of these later methods are sequential minimax

in character except for the bisection procedure, and this only in a restricted sense.

Additional motivation for our method is provided by the observation that once

a root is located on a sufficiently small interval by a positive and negative reading,

the function will be inclined to be convex or concave throughout the interval, at

least for typical analytic functions.

2. Description of the Procedure. In what follows, we shall describe a numerical

procedure for solving the following problem:

"We know initially a positive and a negative value of a function at two given

points. The function is continuous and convex and is otherwise unknown but com-

putable. Given an integer n > 0, how do we locate its root within an interval of

minimum length in n steps, where a step consists in calculating the value of the

function at any point we choose?" The question has no definite answer until we

specify, for example, that our procedure be sequential minimax; i.e., at each step

of the procedure we assume that the worst possible situation might occur from that

point on in the light of our present information about the function, and proceed to

evaluate the function at a point that hedges against all contingencies so as to

guarantee no more than a fixed interval length at that stage.

We now describe the procedure cycle :

Suppose we are in the situation in which we know

f(a) = Ya > 0   and   f(b) = -Yb, Yb > 0,    where   a < b;

further, the root is greater than S, where S is known and we have n more readings

to make.

Then we have bracketed the root on the interval (S, W), where

W = a+ (b-a)       Y*
Y a +   lb

If n = 0, the computation ceases and the values S, W are recorded.
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If n > 0, calculate the value of/atx = S+ (W — S) pn(Yb/Ya). (Graphs of

Pn for n = 1, 2, 3, 4 are included in Fig. 5 at the end of this paper. )

If fix) = Yx > 0, set a' = x,V = b and

S' = x+ ix - a)Yx/iYa - Yx).

If, however, fix) = — Yx < 0, set a' = a, b' ~ x, and if Yx > Yb set S' = S;

otherwise, set

S' = max iS, x - ib - x)Yx/iYb - Yx)).

Finally, set n' = n — 1.

Then we are in the situation in which we know fia') = Ya > 0, /(&') = — Yb>,

Yb> > 0, where a' < b' ; we know that the root is greater than S'; and we havev«'

more readings to make. This completes the cycle. (As the problem is stated, we

initially have S = a.)

In the next section, we shall illustrate how this procedure works on a particulai

example.

Remark 1. The foregoing procedure is an approximation to the actual minimax

procedure. The theoretically correct procedure involves replacing the expression

p„( Yb/Ya) in the formula for x above by

AS - a   Yb\

P«\b^a-'YJ>

where p„(<S, Y) is defined in Sec. 4. Since the function p„(S, Y) is relatively in-

sensitive to S in our choice of p„(<S, Y) near the minimax, we feel that the ap-

proximation

Pn(0, Y) ^ p„iS, Y)

is justified, and define pn(F) = p„(0, F). This approximation renders the pro-

cedure more adaptable to machine computation.

Remark 2. Since the average digital computer has difficulty in reading graphs,

in order to program the procedure one would first find suitable algebraic approxi-

mations to the graphs of p„ after the fashion of C. Hastings, Jr. [3].

3. A Numerical Application—Comparison with the Bisection Technique. Sup-

pose we want to bracket a zero of a certain function / defined over the interval

(0, 1). We know that/ is continuous and convex, and that/(0) = I, fil) = —1.

As a simple example, let/(x) be given by/(x) = max ( —1, (x — l/3)(x/2 — 3)).

We intend to make three evaluations of the function. Referring to the graph of

ñ3(0, Y) in Fig. 6, with Y = F0/Fi = 1, we see that we can guarantee locating

the root on an interval of length 0.01 times the length of the original interval. How-

ever, since the graphs represent the worst that can happen, we expect to do much

better.

We proceed to calculate:

Cycle No. 1. We have a = 0, b = 1, Ya = 1, Yb = 1, S = 0, n = 3, whence

by our formula we obtain W = 0.5, and we have located the root on (0, 0.5). Next,
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we compute x = 0 + (0.5 - 0)p3(l) = 0.5(0.148)  = 0.074, and we find that
/(0.074) = 0.76839 > 0, so that a' = 0.074, b' = 1, and

s' = °-074+T-(oS) = ° 3195°-

Finally, n' = 2.
Cycle No. 2. Dropping primes on the new variables, we have a = 0.074, 6=1,

F„ = 0.76839, F» — 1, S - 0.31950, n = 2, whence by our formula we obtain

W = 0.074 + °-9^°687369839) = 0.47636,

and we have located the root on (0.31950, 0.47636). Next, we compute

x = 0.31950 + 0.15686p« L   *   J = 0.31950 + (0.15686) (0.198) = 0.35066,
\0.7oöo9/

and we find that/(0.35066) = -0.04795 < 0, so that a' = 0.074, b' = 0.35066;
and since Yx < Yh, we have

Cf/ /nornm n^AR       ( 1 - 0.35066)(0.04795)\        n,10Kn
S  = max ( 0.31950, 0.35066-_ nn¿7Q^- / = 0.31950.

Finally, n' = 1.

Cycle No. 3. Now we have a = 0.074, b = 0.35066, Ya = 0.76839, Yh =
0.04795, S = 0.31950, n = 1, whence by our formula we get

w      r>nn„   ,   (0-35066 - 0.074)(0.76839)W = °-074 +        ,0.76839 + 0.04795- = °-33441'

and we have located the root on (0.31950, 0.33441). Next, we compute

x = 0.31950 + (0.33441 - 0.31950)Pi (^§|§)

= 0.31950 + (0.01491 )pi(0.624) = 0.32440,

and we find that/(0.32440) = 0.02535 > 0, so that a' = 0.32440, b' = 0.35066,
and

Finally, n' = 0.

Cycle No. 4. Finally, we have a = 0.32440, b = 0.35066, Ya = 0.02535, Yh =
0.04795, S = 0.33294, n = 0, whence by our formula we get

W - (\Wim 4- (0-35066 - 0.32440)(0.02535) _W - 0.32440 +-0.02535 + 0.04795-°'33348'

and we have located the root on (0.33294, 0.33348). Now n = 0, so the computa-

tion ceases and the interval (0.33294, 0.33348) is recorded.

Remark. Using the bisection technique, in 3 readings we would find the bracket-

ing intervals of lengths 1, 0.5, 0.25, 0.125. Taking convexity into account, by our
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method we obtain intervals of lengths 0.5, 0.15686, 0.01491, 0.00054, an obvious

improvement.

4. Derivation of the Functional Equation. Given a continuous convex function /

and two of its values, one positive and the other negative, (say /(xt) > 0 and

fix%) < 0, with Xi < x2), how should one search for the zero of the function that

lies on the known interval (xi, x2)? Using the principle of optimality of the theory

of dynamic programming [2], we formulate the problem in terms of minimizing

the maximum length of interval on which we can deduce that the zero is located

in n readings taken sequentially.

First, by reduction to scale, we can always consider the diagram shown in Fig.

1, where /(0) = 1,/(1) = -F, F > 0, W = 1/(1 + F). Since/is convex, the
zero must lie on (0, IF). If we have just one more reading to make (n *= 1), then

we choose* x on (0, IF) and calculate/(x). It can be shown by simple dominance

arguments that no reading of / need ever be taken outside any interval on which

the zero has been located. Having chosen x and calculated f(x), we encounter

exactly one of the following cases (barring f(x) = 0, of course, the best possible

case).

Case 1. If f(x) = V > 0, then by drawing lines joining known points on the

graph of /, we have the picture shown in Fig. 2, with the root located on [S, W],

as implied by the convexity of /.

Case 2. If fix) = — V < 0, the picture is shown in Fig. 3, with the root located

on (max (0, S'), W") as indicated.

Let S" = max (0, S'). If x is the final point at which/(x) is to be determined

(i.e., n = 1) then it is chosen so as to minimize the maximum possible value of

max (IF' — S, W" — S") consistent with our choice.

Let us consider the general n-stage process in which we have several more read-

ings to make. In either of the two cases diagrammed above, all the essential data

can be described by a basic triangle determined by a two-parameter system as

follows.

In Fig. 2, we can conclude that the graph of / lies above the line segment VS

and below the segment VW'Y (where the letters stand for both points and values

* The particular optimal choice will be derived in what follows.
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Fig. 3 Fig. 4

in the obvious manner). If we now draw the line segment SY, it may or may not be

crossed by the graph of /; but if it is crossed at some point P, say, we can replace

that portion of the curve lying below P Y by PY. This device does not violate the

convexity condition nor does it exclude the worst possible case. This can be shown

by simple dominance arguments based on our knowledge of the function at any

particular stage.

The essential data can thus be described by the triangle VSY. Since a vertical

reduction in scale leaves the problem invariant, and a horizontal reduction leaves

it relatively invariant, the triangle VSY can be replaced by a triangle of standard

form described pictorially by two parameters Y, S (say), as shown in Fig. 4.

Similarly, in the second case (Fig. 3), the graph of/lies above S'V and below

\W"V. Draw the line segment from 1 to <S' and replace any portion of the graph

of / lying below this line by the line itself from 1 to the point of crossing. This does

not affect the choice of subsequent values of x, since they will all be chosen on

minimal bracketing intervals. Again, this can be shown by simple dominance argu-

ments. Thus, in the second case also by a suitable reduction to scale we are led to

another representation of Fig. 4.

Now define

Rn(S, Y) = the minimum length of interval on which we can guarantee locating

the zero in [0, 1] of any convex function /, given that /(0) = 1, /( 1 ) = — F < 0,

the root is > *S, and we have n readings to make.

If n = 0, we clearly have

Ro(S, Y) =
1

1 + F
- S.

Next, using the principle of optimality, and taking into account the scale factors,

we obtain for n > 0 the following recurrence relation:

Rn(S, Y) =      min      max

max        (1 - x)Rn-i(—*—-tt'v)
osvsi-x(i+r) \l — X    1 —  V    V /

,  xY-V
max xKn-i [   jp ■—í?ñ

[DS7'|r(i-s)/(i-s) \X(i   —   V )

(xY-V^_       \

\x(Y - V) '      J

with the upper and lower expressions after the brace corresponding to the first and
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second cases, respectively. The scale factors are obtained in a completely elemen-

tary manner by means of similar triangles.

The ranges of the variables S, Y above are given by F è 0, 0 ¿ S ¿ 1/(1 + F).

To render the expressions more amenable to machine computation, we make the

following substitutions:

IF = ^-y, 4>n(S, IF) =RniS,Y),   whence   Rn(S, Y) = <*>„( S, y^y).

An additional modification of the quantified variables V, V finally reduces the

system to0o(<S, W) = W - S,

<j>n(S, W) =   min   max

(1 - x)   max   <Pn-i[z--,—7-w^l
«si'sr \1 — X     t   — Wx )

,     ft W(l -t)       \
£, *n-1 \x ' W(l - x) + x - t)

x max

where 0 ^ S ^ IF S 1.
The functions 0„(S, IF) are then computed for n = 1, 2, 3, 4 by means of a

discrete approximation using various grid sizes and linear interpolation.

The minimizing values of x are recorded and these form the basis for our optimal

policy; i.e., x* = x„*((S, IF) is the point at which we evaluate our unknown function

/given that the root lies on (<S, IF) in our basic triangle and there are n evaluations

to be made. The point x* is, of course, itself measured on the basic triangle. To

take care of the general situation, we must relate our readings to the original scale.

If we let p„(S, F) denote the fraction of the distance between S and IF occupied

by x„*, we readily obtain

*

PniS, Y)   =
xliS, W) - S

W - S     '

where IF = 1/(1 + F).Itis now a relatively easy matter to relate xn* to the original

scale and thus to obtain the procedure cycle outlined in Sec. 2.

Graphs of the functions ñ„(0, F) and p„(0, F) for n = 1, 2, 3, 4 are included

at the end of this paper (Figs. 5 and 6).

5. Remarks. We shall close with a few remarks intended primarily to validate

certain assumptions made, tacitly or otherwise, in the derivation of the functional

equation.

1. Suppose we are at a certain stage in an optimal sequential minimax search.

We have computed several values of / and are ready to choose our next point of

evaluation. Let a, b denote the closest evaluation points on the left and right, re-

spectively, of the minimal interval iS, W) on which the root is known to lie. Then

in an optimal procedure, we choose x on (a, b). To see this, we need only state that

since the unknown function / may indeed be linear both to the left of a and to the

right of b (a possible contingency), it is easy to see that any such subsequent read-

ing would in such a contingency afford us no information regarding the character

of/ within (a, b) pertinent to the location of its zero, not already implied by the

quantities a, b, fia), fib), S and IF, or indeed by any of our previous readings.
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Similar but slightly more involved arguments can be given to show that the next

reading should be taken on the interval (S, W).

2. In the treatment of case 2, it was tacitly assumed that Yx < Y; i.e., the S'Y

line has a negative slope as shown in Fig. 3. Again, it can be shown by dominance

arguments that the worst situation occurs when / is monotone, and indeed when

the graph of / lies above the line SY. It is this condition that determines the limits

of the quantified variable V in the Upper line of the functional equation for R„ .

It is precisely such dominance considerations as these that, though enabling us to

express the functional equation in a relatively simple form and to obtain an optimal

"policy" therefrom via its recursive computation, prevent us from obtaining an

optimal "procedure" directly from the equation. However, all the contingencies,

together with the information about the function / they afford, are taken care of

in the procedure outlined in Sec. 2.

3. The function Rn(S, Y) is separately decreasing in S and Y. To see this for

the first variable, for example, upon recalling the definition of Rn(S, Y), we need

only observe that the information that the root is > S includes the information that

the root is > S' if S' < S. On the basis of the additional information, then, we can

clearly guarantee at least as short a final bracketing interval with a larger S value

if we are proceeding optimally; i.e., we have Rn(S, Y) á Rn(S', Y) if S > S'.

An analogous argument applies for the second variable.

4. Finally, we note that an analytic treatment of the case n = 1 provides a

check on the machine computations.
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