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Summary

Newton's method for the evaluation of the zeros of analytic functions is gen-

eralized by the recurrence relation

zi+i = Zi- (ki-li)fi\zi)/fli+1)(zi),

where ki and k are determined so that ideally U + 1 = ki = k in the vicinity of a

zero of order k. The process so defined is a second-order one and yields accurate

approximations to zeros for all values of k, provided I,, + 1 = k{ = k.

1. Introduction. Consider the polynomial equation/(z) = 0 in a complex variable

z, where f(z) has complex coefficients. To solve this equation by Newton's method

one uses the conventional recurrence relation

(1) Zi+i = Zi + (Az)i,    where    (Az), =  -f(Zi)/f'(Zi).

Bodewig [1] has shown that Newton's method is a second-order process if and only

if the sequence {z¿| converges to a simple zero of f(z). He has shown further that

the recurrence relation

(2) zi+i = Zi + (Az)i,    where    (Az), =  -fc/(z¿)//'(z¿),

defines a second-order process whenever {z¿} converges to a zero y of f(z) of multi-

plicity k.

The process defined by equation (2) leaves two problems unsolved: (i) In prac-

tice k and y are usually not known,* (ii) The ultimate accuracy of the approxima-

tion to 7 is limited by the fact that /(«<), f'(Zi) —* 0 as z¿ —> y, provided k S; 2.

The unified process, which was developed to meet both of these problems, is

characterized by the recurrence relation

(3) zi+1 = Zi - (ki - li)fti)(zi)/fl'+1)(zi),

together with an explicit method for determining /, and fc, which will be described

in §2. Note that (3) follows from (2) if k¡ = k and f(z() is replaced by/u,) (z;).f

Hence the unified process is a second-order process provided 0 ^ I, < ki = k. This

justification of the unified process as a second-order process is the principal service

provided by (2).

Received 9 Apr., 1957; revised 21 July, 1958.

* R. A. Brooker [2] describes a modification of (1) in which k is approximated by the

smallest positive integer I such that

\f[Zi  -   lf{Zi)/f'(zù}  I   <   \f[Zi  -   (I  +   l)/(Zi)//'(2.-)] |,

provided | f(zi+i) | < | f(zi) \.
t The author is indebted to the referee for pointing out this simple connection between

(2) and (3). This connection has influenced considerably the presentation of the first two sec-

tions.
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The principal result of this paper is the formulation of a method for determining

h and k{ in such a way that ?< —» k — 1 in a certain sense as z¿ —» 7. In the stand-

ard application of Newton's method to a polynomial with multiple zeros the Eucli-

dean algorithm would first be applied to eliminate the multiple zeros. (See [3].)

This greatest common divisor process is, however, totally foreign to Newton's

method, whereas our determination of Z, and fc¿ is intimately related to the compu-

tation oîfu)(Zi) and/1 ' (as,) in (3). This close connection motivated the choice

of the term "unified process."

2. The Unified Process. Let f(z) = ^,"_0 c{z\ where » â 1, c, = 1, and c¿ is

a complex number for i = 0, 1, ■ ■ ■ ,n. Throughout this section we shall assume

that 7 is a zero of f(z) of multiplicity k. Thus we can write f(z) = (z — y)kq(z),

where q(y) ^ 0.

Lemma 1.

FW) ' feí + 0[(2 - -)2J*     for     - = o,i,---,*-i.

Bodewig [1] obtains the same result for m = 0. The lemma follows then by ap-

plication of that result with/(z) replaced by/(m)(z). From Lemma 1 (with m = U)

equation (3) becomes zi+i — g< — (fc,- — U) [(z, — y)/ik — lt) + 0[(z; — 7)2]].

So if ki = k we have z¿+i = 7 + 0[(z,- — 7) ]. This result shows that equation (3)

does define a second-order process when 0 g í, < fc¿ = k. The main application of

Lemma 1 will occur below in the determination of fc¿.

Suppose that z,- is a "close approximation" to 7. Let -n be a fixed, sufficiently small

positive number. Then Z, is defined as the smallest non-negative integer such that

|/<l<+1>(*.-)|èi,.

Let us assume for the moment that U > 0 if and only if k > 1. We will justify

this assumption below in Lemma 2. Then Lemma 1, when applied for m = Z, and

U — 1 yields

(k-U + 1)[Çït] («•) = (fc - M [¿TTñ] M + ° [(«•■ - ^)2)] •

The preceding equation suggests that we let ki = Z, + x — 1 where x. is the closest

integer to

f0iZi)/fi+i\zi)
(4)

/(íi)(zí)//(í'+1)(zí)-/«-1)(zi)//(¡i,(z!-)

We can now give an explicit description of how the unified process operates to

extract an arbitrary and unknown zero of/(z). Let 77 and the starting value Zi be

given. Then zi+i is determined recursively from z¿ by means of equation (3), where

for each i, U is the first non-negative integer to satisfy |/li<+1'(z¿) | ^ r¡, and k( is

1 or li + x — 1 depending on whether U is respectively zero or positive. To obtain

£, round x as given in (4) to the nearest integer.

We know that the unified process defines a second-order process if

0 á h; á h■- 1 = k - 1.

: 0(i) is a quantity which vanishes at least as fast as x, i.e., | 0(x)/x | is bounded as x —> 0.
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In looking ahead to the next section it is evident from accuracy considerations that

in practice we would prefer that I,■ = k{ — 1 = k — 1 ; for note that then equa-

tion (3) becomes

(5) zi+i = zl-fk-1)(zi)/fk)(zi),    and   f(y) * 0.

The following lemma shows that the situation where l,■ = k — 1 is always obtained

as soon as z, is close enough to y.

Lemma 2. Suppose z, —* y, where {z,j is determined by the unified process. Then

there exist positive integers Ni, N2(Ni ^ N2), such that 0 ^ I,: s» k — 1 for

i ïï Ni and U = k — 1 for i ^ N2.

The proof of Lemma 2 follows from the continuity of/<m)(z) for m = 0, 1, • • • , k;

the fact that/(W(7) ^ 0 while fm)(y) = 0 for m = 0, 1, • • • , k - 1; and finally

the fact that 0 g m g U implies |/<w)(zi) | < n.

The following restriction on n follows immediately.

Condition o~.i v. Suppose {z¿} is determined by the unified process. Then z,- —> y

implies that | fk) (y) \ ^ n, where k is the multiplicity of y.

Example 1. Suppose, for convenience, that n < .01. Let

f(z) = (z - l)2 (z + l)2 = z4 - 2z2 + 1.

Let zi = 2". It follow« that Az = -///' = -(z - l/z)/4 - -z/4 + 0(l/z).

Then z2 > 2"~ , and by induction zn > 2.

Also,/(l + 5) = 452 + 453 + 54, and/'(l + 5) = 85 + 1252 + 453. Therefore,

Az = — 8/2 + 0(82). It is easy to verify that 1 + n ^ zN¡ ^ 2 for some Ni > n.

Thus f'(zNl) è i7 and we have lNl + 1 = 1 < k. However, we do indeed have

0 g h Ú k - 1 for i ^ Ni.
Next choose N2 ^ A^i such that i > N2 implies z, < 1 + y . Then i > N2 im-

plies \f'(Zi) | < |/'(1 + ,2) | < v/2. Therefore, h ^ 1. Since

/"(l + ¿) = 8 + 245 + 1252,

it follows that li + 1 = /c for all i > N2. Thus Nx and A^2 satisfy the conditions

of Lemma 2.

In summary the behavior of the process for large real z in this example is that

which would be expected for a 4th order multiple root at the origin, for with

f(z) = *

we get f(z)/f'(z) = z/4 and \f'(z) \ > r,; and we have Az = -z/4 + 0(l/z).

Así;-» 1, however, the behavior approaches that predicted by Lemma 1 near a

double root at z = 1, i.e., (z — y)/(k — m) = (z — l)/2, when m = 0. We

have seen that Az = -(z - l)/2 + 0[(z - l)2].

In this section we have considered the unified process in an abstract setting in

the sense that we have passed to the limit and employed complex numbers in the

ordinary fashion. By so doing we have been able to present the basic facts about

the process, especially as regards convergence, in a form unencumbered by the com-

plications we shall encounter in the next section. There we shall introduce an ap-

proximate convergence for a class of complex numbers whose real and imaginary

parts have decimal expansions of bounded length. We can then indicate precisely

how the second problem mentioned in §1 is relevant.
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It is clear that we have already solved both of the problems set forth in §1 in the

sense that if we have convergence at all, then the convergence is of the second order

and eventually the situation in (5) holds. As to when the process does converge,

we refer the reader to the existence theorems for Newton's method given by Ostrow-

ski [8]. However, it is not obvious how anything useful (in a practical sense) can

result from a non-trivial adaptation of such theorems to the unified process. On

the other hand see Brooker [2] for an example where Newton's method does not

converge.

3. Numerical Application. From now on we consider only those complex num-

bers whose real and imaginary parts contain p decimal digits. Consistent with our

"rounded-off" numbers we now define the numerical convergence of truncated

sequences \zi\ of such numbers. Let e > 0 be fixed and let M be a positive in-

teger, which depends only on {«,-}. We say that [zx] converges if there exists a

positive integer N ^ M such that | (Az)N\ ^ e | zn |. We also assume without

loss of generality that /(0) 5^ 0, i.e., c0 9e 0.

Situations producing non-convergence usually fall into one of two classes: (i) z¿

occasionally lies in a sufficiently small neighborhood of a root of f'(z)/f(z). This

occurs frequently, since by Lucas' theorem any convex polygon containing all of

the roots of f(z) contains all of the roots of f'(z). (See [5].) (ii) A subsequence of

{z,} is cyclic.

Class (ii) may occur due to round-off error, e.g., because of lack of precision in

the coefficients of f(z) or because of multiple roots if fc, < k. In addition there are

bona fide situations like the one referred to at the end of §2, where accuracy con-

siderations play no part. We employ a systematic method for selecting a new value

for Zi whenever non-convergence occurs.

We now modify our method for determining li and kt so as to be consistent with

our approximate arithmetic. We first define U to be the smallest non-negative in-

teger (if such exists) such that

(i)  I qii+i («<) I à n | qu+i (0) ! and

(ii)  | qu-i izi) | < r;2 | ç;,._i (0) |, whenever U > 0.

In the above expressions {qm(z)} are the quotient polynomials which are obtained

by dividing f(z) successively by z — z¿. More precisely, define recursively

f(z) = qo(z) = (z - Zi)qi(z) + /(z.)

and qm(z) = (z — z/)qm+i(z) + qm(zt) for m = 1, 2, • • • , U . Note that in general

fm(Zi) = m\qm(zi). If no such U < n exists, replace z¿ by z; — (Az)i_i/2.

Condition (ii) has been added to the original definition of U in order to help

detect non-convergence class (i) and to separate closely bunched zeros. Example 2

will show how logio | qm(0)/qm(Zi) | gives a measure of the number of significant

digits lost in the evaluation of/<m)(z,). We also encounter in Example 2 a limiting

situation where two zeros are just close enough so that condition (ii) fails to sepa-

rate them.
The determination of /c¡ differs (when U > 0) only by the manner in which x is

determined. As regards x, let 8 be a fixed small positive number. Then
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(i) Set x = j if x is well-defined by (4) and there exists an integer j,

such that | x — j | < 5.

(ii) Set x = 2 otherwise.

Note that (ii) results in setting /c¿ = U + 1. Recall that k,■ = x + U — 1 when

U > 0.
As motivation for (i) we know that if 7 is a multiple root and z,- is so close to 7

that U > 1, then x should be close to an integer which is bounded below by 2 and

above by n — k + 1. When the corresponding smallest value of x—namely, x = 2

—is taken on, then Z¿ + 1 = k,: = k, while ki ^ n implies

x = ki — h + 1 ^ n — k + 1.

We make the assumption that case (ii) reflects a loss of significant digits in the

computation cf fli~1)(zi)/fli)(zi), due to the nearness of z¿ to a multiple root 7.

The assumption is biased toward the selection of multiple roots as Example 2 indi-

cates. In the discussion of Example 2 a modification of (ii) is described which is

biased toward the separation of roots.

Example 2. Suppose v < .1 and consider

f(z) = z2 - (2 + „)z + (1 + „) = (z - 1) (z - 1 - „).

Suppose zN = 1. Then $i(0) = — 1 — 77 and/'(zjv) = — 77. Hence,

I qi(zN) \<n\ 3i(0) I

and In > 0. Further, g2(0) = 1 implies lN = 1.

Since fN^\zN) = 0, x = 1 and kN = Z„ + 1. It follows that (Az).v - »7/2.*

But ço(l + 17/2) = -772/4 and/'(1 + 77/2) = 0. Therefore, lN+i = 1 and

(Az)„+1 = 0.

As a result 1 + 17/2 is identified as a double root of f(z). Observe that the final

step in the computation of qo(l + tj/2) is the addition of ?o(0) and —1 — 77 — 77/4.

The example also shows that sequences \z(] can converge to numbers which differ

from roots oif(z) by more than could be attributed to round-off error. In particular,

the distinct roots 1 and 1 + 77 are treated as one double root equal to the mean

value of 1 and 1 + 77. We shall indicate how this situation may generalize. By mak-

ing use of the following lemma it suffices to produce a set of roots and a value of

zN such that l, = n — 1.

Lemma 3. Let f(z) be an arbitrary polynomial of degree n having roots 71, • • • ,

7ft with multiplicities mi, ■ ■ ■ ,mh, respectively. Then for every complex number

zo we have

Zo-f"-1)(zo)/fW(zo) = EÎ-UB.7*/"-

In particular, if f(z) = (z — y)n, then z0 — /n_1(20)If (zo) = 7- Here we have a

trivial case of "infinite order" of convergence, i.e., when Z¡ = n — 1, the problem

* Note that if the determination of ki(U > 0) were modified so that when | x — 1 | < b,

ki = h and h is decreased by 1, then we would have In = 0 and (Az)n = 0.



34 JOHN   I.   DERR

of finding y under the unified process generalizes the trivial problem of solving a

linear equation by Newton's method.

We know that for every 77 there exist polynomials such that distinct roots will be

identified as multiple roots. Clearly, in order to remedy this situation in any particu-

lar case we must decrease Z¿ and hence -n. However, we are at one side of a dilemma.

For consider the case where y actually is a multiple root. Then if r¡ is sufficiently

small, we must have z¿ very close to y before Z, can exceed 0—which means that as

77 is decreased, multiple roots tend more to be split into roots of lower multiplicities

with their maximum accuracy limited to p/(k — ki + 1) digits. Recall from Ex-

ample 1 that Az = — (z — l)/2 + 0[(z — l)2] for z near 1. Thus z = 1 + 77 would

satisfy our numerical convergence criterion if y g s and be identified as a simple

zero.

The fact that z = 1 + 77 would be determined to be within e distance of the dou-

ble root at 1, although of the wrong multiplicity, would probably suffice for most

practical cases. However, there do exist situations where the diagnosis of multi-

plicity is important in its own right, e.g.,   /   dx/y/x(x — e) converges,  whereas
Jo

\ dx/y/x2 does not. Moreover, in addition to such special cases, the best results
Jo

are usually obtained when Z¿ + 1 = ki = k.

We have observed that Z¿ is a nondecreasing function of 77. Observe, however,

that the approximate solutions obtained by the unified process do not depend con-

tinuously on 77, since Z¿ and fc¿ are integer-valued functions. We have also seen that

an optimum value of 77 depends strongly upon the distribution of the roots near

Zi. Roughly speaking, if several distinct roots are bunched together, 77 should be

"small."* On the other hand, if only a multiple root is near z,-, then 77 should be

"large." For general calculations we recommend that 77 = \/e and 1/e ^ 10p~2.

4. Computational Examples. In this section we shall extend the discussion of the

preceding examples. In particular we shall record and interpret some solutions

which were obtained on The RAND Corporation JOHNNIAC computer using

nine-digit floating decimal (scientific notation) arithmetic (p = 9) with e = 10~ ,

and 8 = 10~3. We illustrate the sensitivity of the process to 77 by considering 77 =

10~3 and 77 = 10"4.

Example 3. We consider Example 1 again, i.e.,/(z) = z4 — 2z + 1. With 77 = 10~4

the pairt of complex conjugate roots, 1 d= ¿(.663098208-10~4), and the associated

reduced polynomial, q(z) = z + 2z + 1, were first obtained. Note that in addi-

tion to the fact that the double root +1 was approximated by a pair of simple

roots, the modulus of the relative error substantially exceeds e.

Recall that /(l + 0) ~ 402 and f'(\ + 0) ~ 80 as 0^0. Thus at

Zi = 1 + ¿(.663098208-10"4),

we have/(z¿) =  —2-10-8 and/'(z¿) = í'(-o-10~3). However, due to round-off er-

ror the evaluation of f(z¡) yields zero. Therefore, (Az)¿ = 0, since |/'(«,•) | > 77.

* In the next section we shall show that this is not always the case.

t The roots were actually obtained in succession. When a root is determined the reduced

quotient polynomial Jit(z) replaces/(z).
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On the other hand, with 77 = 10 3 we obtained the double roots

1 + ¿(.000000015 -HT8)

and -.999999998 + ¿(.753350000-10~8j. Here the relative error is less than £ in

either case. The first double root was obtained because now .5 • 10~3 < 77.

Example 4. The polynomial in Example 2 is now generalized to the class of poly-

nomials of the form z2 — (2 + 8)z + (1 + 6). The results tabulated immediately

below were obtained with 77 = 10~4.

8 Roots I Error I

.1 1.09999996 - ¿(.000000001
1.00000004 - ¿(.490000000

.01 1.00999900 - ¿(.000000001
1.00000100 + ¿(.200000000

.001 1.00099296 - ¿(.000000002
1.00000704 + ¿(.100000000

.0001 1.00005000   (double root) .00005

.00001 1.00000500   (double root) .000005

10~8 ) .00000004
lO"9)

10~16) .000001

10~18)

10~12) .00000704

10"14)

With 77 = 10~ and everything else unchanged, the results obtained were the

same except that for 8 = .001 we obtained 1.00050000 as a double root with an

error of .0005 in magnitude.

If z = 1 + A, we have/(z) = A(A - 8) and/'(z) = 2A - 8. With l¡ = 0 it is

clear that as zt —> 1 + 8, A,- —> 8 and

<A2)*' - AAf^I A<)^ = i6 - A¿ + 0 [(* - A*)2]-A¿ + (Ai - 8)

Such a situation can always be arranged if 77 < 8, e.g., if 77 = 10~ and 8 ^ 10~ .

Under these circumstances {z¡¡ converges numerically as soon as ] 6 — A,-1 ^ e*

However, since we are using nine-digit arithmetic, (Az),- cannot be computed with

enough accuracy to make the comparison with £ unless \ 8 — Ai | ^ e/(10Ai) ; for

otherwise | Aj(A,- — 8) | has less than one significant digit. Therefore, 1/(10 0)

yields a close estimate for the magnitude of relative error. The estimate accounts

for the increase in error as 8 decreases from .1 to .001 for the results tabulated above.

We conclude the discussion of Example 4 by making several remarks which have

general implications.

(i) When roots are bunched close together, the magnitude of relative error can

exceed £ even when the multiplicity is correct.

(ii) If the roots are sufficiently close together, then the relative error will be de-

creased if the multiplicity is determined at certain values greater than the true

multiplicity. In Example 4, 1 and 1 + 8 will be sufficiently close as soon as

1/(1O80) = 8/2, i.e. 8 = V2-10"4.

5. Conclusion. Notwithstanding the tremendous effort which has been expended

on the problem over the years, the recent appearance of the high-speed computer

* The argument for the remainder of this section is not precise, but only as a result of sec-

ondary considerations.
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and the corresponding increase in size of the practical problems which can be at-

tacked have created new demands for computational methods. For example, the

methods advocated as late as 1952 by 01 ver [7], being non-iterative in character, are

quite different from those which are considered here. One explanation for the differ-

ence in emphasis might be that a computer is very efficient at executing repetitively

a simple sequence of operations. For the unified process a great bulk of the computa-

tion involves one basic operation, namely, synthetic division performed with com-

plex numbers. When applied to a computer the unified process is flexible and auto-

matic and can be further controlled by manipulating sensitive quantities such as

77, 8, e, and Zi .

For comparison purposes we consider two methods which have proved useful for

digital computers. Under certain circumstances each method evaluates roots with

about one-half the effort required by the unified process. However, both methods

require special preparation in the case of multiple roots.

Hitchcock's method [4] requires that f(z) have real coefficients and utilizes the

resulting decomposition of f(z) over the reals into linear and quadratic factors to

avoid complex arithmetic in the synthetic divisions. Otherwise, the method is es-

sentially Newton's method.

Muller's method does not require the evaluation of/'(zt). When the degree of

/(z) is large, a saving of close to 50% results. The order of convergence of the proc-

ess is 1.84 for simple roots and 1.23 for double roots. Apparently, no improvement

over Newton's method obtains for multiple roots whose order exceeds two.

Most of our discussion remains valid for arbitrary analytic functions. §2 goes

through intact, but the application described in §3 requires some modifications.

Moreover, for the method to be useful in practice the class of functions considered

should be restricted to those which have a non-empty, finite set of zeros and for

which the derivatives are easy to compute.
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