
On The Error Propagation in Adams'
Extrapolation Method

By B. Zondek and J. W. Sheldon

The error propagation in step by step integration methods is governed by the

zeros of certain polynomials [1]. These zeros, Xo, • • • , Xn , are the error multipliers,

i.e. an initial error propagates through the integration like

( 1 ) Vr = a0X0r + aiXr + ■ • • + a„X„r,

where r is the step number and a0, • • • , a„ are constants. In this theory we regard

the differential equation as being locally linear with constant coefficient. The Adams

extrapolation method [2] of order n + 1 for a differential equation

(2) y' = f(x, y)

is written symbolically

(3) yr+i = yT + A (ßo + ßiV +  ■ ■ ■ + ßnV)fT,

where h is the step size. This leads to the equation

(4) X - 1 = ki ßo + ßi (l - *-) + • • • + ßn (l - 0

for the error multipliers Xo, ■ • • , X„;

(5) k=hT-
dy

is considered constant in our approximation. The coefficients /?o, /?i, • • ■ are gen-

erated by the power series expansion

(6) Tí-r-:-T-r  = ßo + ßi Z +
(1 - z) log (1 - z)

and are all positive. The first few are

(7) ßo =1,     ßi = h,     ß2 = A,     ft = I,     ß* - Hi •

For sufficiently small | fc | (or | A |) one of the multipliers, say Xo, has a larger

absolute value than all the others, Xi, • • • , X„ , [3], and an initial error propagates

about like ooXor. In fact it can be shown that for small | k ) one root of equation

(4) is

(8) Xo = e  + 0(kn+2),

while the others are

(9) Xr = 0((kßn)Vn), r = 1, ••• ,n.

Consequently, Xo causes an error propagation about like that of the differential
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equation (2) and we may estimate the accumulated error from the variational

differential equation and the local errors.

When we increase \ h\, keeping n fixed, the multiplier X0 differs more and more

from e . (This has been considered in detail for the Runge-Kutta method in [4],

where the notion of fidelity is used.) Furthermore, the "small" multipliers, Xi, • • ■ ,

X„ , may be expected to increase according to equation (9) and perhaps dominate

the "natural" multiplier, Xo. In the latter case there is danger of extraneous oscilla-

tions appearing in the integration.

When we increase n, keeping h fixed, the multiplier.X0 approaches ek according

to equation (8) (provided | h \ is not too large). On the other hand, from equation

(9) and the fact that lim ißn)lln = 1, we may expect the "small" multipliers to

become more significant and perhaps to cause extraneous oscillations.

We now state a lemma that will give us some information about the multipliers

when | fc | is not small.

Lemma. Let

(i) h(\) =\-l-k!l+ai(l-±)+---+an(l- iYj,

(ii) fc be real,

(iii) ^0,
(iv) k 5;  -1,

(v) | k |{2 | ai | + 221 a21 + • • • + 2" | a„ |) < 2 + fc;
then h(\) has either one simple zero or no zero outside the unit circle, according

as fc > 0 or fc < 0 respectively.

Proof. Let/(X) = X - 1 - fcandff(X) = oi(l ~ 1/X) + • • ■ + a„(l - 1/X)n.

Thus A(X) = /(X) - kgi\). Now let R be a real number R > 1. Then, for | X | = R,

Min |/(X) | ^ \ R — 1 — fc |, and this increases without bounds in R. Further-

more, for | X [ = R,

Max | fcfir(X) | ^ | fc 11 I ai |M + M + • • ■ + | a„ | M + U |

g | fc | | | ai | 2 + • ■ • + | an | 2"} ,

and this is bounded in R. Therefore there exists a real number Ri > 1 such that

[ /(X) | > | fc<7(X) | for | X | ^ Ri . It is clear from this that h(\) has no zeros on

and outside the circle | X | = Ri. To prove the lemma, it thus remains to show that

/(X) and A(X) have the same number of zeros in the annulus 1 ^ X ^ Äi. Now by

Rouché's theorem [5] (applied here to a doubly connected domain), if |/(X) | >

| fcg(X) | on the boundary, /(X) and A(X) have the same number of zeros in the

domain. The boundary consists of the two circles | X | = ßi and | X | = 1. Now Ri

was chosen so that | /(X) | > | kg(\) | on | X | = Ri. So it remains to demonstrate

this inequality only on the circle | X | = 1.

On the unit circle

kg

f
,., Iai(l - 1/X) + ••• +an(l - 1/X)"

1 IX- 1 -fcl

< , , , I d | |X — 1 1 + ••• + I a. | | X - 11" = .
= |fc| IX-l-fcl 5
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Now write n = | X — 1 | and r2 = | X — 1 — k |. Then it is easily shown that for

X on the unit circle and k real r2 = {(1 + k)r1 + k2]1'2, and therefore

kg

f
< 8(r,) = \k\ I ai ! n + " ' " + i a" i ri"

where n ranges from 0 to 2. Let us find the maximum of 5(r,) in this range. Differ-

entiating we get

^8(n)
dri

= \k

k2\ ai | + 2k21 021 r, + 3fc21 az \ r2 + (4fc21 <x41

+ (l + fc)|a2|)n3+ ••• +(n- 1)(1 + k) | an | rl+y

¡(1 + fc) n2 + A;2;3/2

and, since k ?± 0 and A; ̂  —1 by conditions (iii), (iv) of the lemma,

(d/dri)8(ri) > 0, and therefore 8(ri), being continuous in the range, has its maxi-

mum at n = 2. This maximum is

¿(2) - I k I ' «i I 2 + 1 «2 I 2' + • • • + 1 a" ! 2"

and by condition (v) of the lemma 5(2) < 1, so that on the unit circle | kg/f | ^

5(2) < 1, and the lemma is proved.

Now we apply this lemma to the error propagation in Adams' extrapolation

method. There are two cases, k > 0 and k < 0.

If k > 0, we are integrating in the direction of natural error increase (e > 1).

Condition (v) of the lemma becomes

(10) k(2ß2+ ■•• +2"-1/3n) < 1.

This is a sufficient condition that there be only one multiplier outside the unit circle

(and this must be the natural one). Consequently, if J k \n+2 <£ek (see equation (8)),

the error propagation is approximately governed by the solution of the variational

differential equation. We see, for example, that the 2nd order method (n = 1)

always satisfies condition (10).

If k < 0, we are integrating in the direction of natural error decrease (e < 1).

Condition (v) of the lemma becomes

(11) -fc(l +2ßi+ ■■■ + 2nßn) < 2

This is a sufficient condition for all multipliers to be within the unit circle. More-

over if k has its critical value

(12) k =
1 + 201 + • • • + 2"ßn

there is a multiplier —1. (This is seen by substitution into equation (4).) When

k is smaller than its critical value, we may expect extraneous oscillations with in-

creasing amplitude. Accordingly, if we want the error propagation to be approxi-

mately governed by the variational differential equation, it is certainly necessary

for condition (11) to be satisfied (in addition, of course, to the fidelity condition
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| fc \n+2 « e\) We get, for example, for the 4th order method (n = 3) the critical

value fc = — A. We also note that the critical value of fc tends to zero as the order

is increased because E>- 2"ßr is a divergent series.

In practice, for n not too small, condition (11) is almost necessary and sufficient

for the natural multiplier, Xo = ek + 0 (fc"+2), to dominate the other multipliers.

When f(x, y) is complicated, the labor of integration is proportional to 1/A. If

we minimize this, subject to given truncation error and one of the conditions (10)

or (11), we get optimum values of A and n. This type of optimization is discussed

for orbit integrations in [6].
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