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1. Introduction. Factorizations of numbers of the form n + 1, [1], [2], are of

mathematical interest for at least four reasons: 1) a possible insight into the un-

settled question as to whether there are infinitely many primes of this form; 2) a

possible insight into the unsettled question as to whether the reducible numbers

(explained below) have a definite density; 3) the relation of these factorizations

to the p-adic square roots of —1; and 4) the relation of these factorizations to the

Gaussian primes. The purpose of this paper is to describe a sieve method for factor-

ing these numbers and to present and discuss some empirical results bearing on

1), 2), 3), and 4) which were obtained by its use. The method can be considered

to be based, in part, on the p-adic square roots of —1, but it is also possible to

avoid the use of this language.

A program based on this sieve method was written for an IBM 704 with a

32,768-word high-speed memory, and with this program all n + 1 from n = 1

to 180,000 were completely factored in about 10 minutes. Since these factoriza-

tions of n + 1 exceed those in existing published tables, (82 percent of these

numbers are greater than a billion), a short summarizing statistical table should

be of interest. In the table below, P(N) is the number of primes of the form n + 1

for 1 ¿ n ^ N, and for comparison, ir_(N) is the number of primes of the form

4m — 1 for 1 < 4m — 1 g N. Further, R(N) is the number of reducible numbers

£N, r(N) = R(N) - R(N - 10,000), and SR(N) = R(N)/N, the mean density
of the reducibles.
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2. The Sieve. The sieve method (substantially more complicated than that of

Eratosthenes) is based on the facts listed in the following theorem. Since many

of these are well known and the rest can be easily verified, no proof need be given.

Theorem. For every prime p of the form 4m + 1 and every positive integer k

there are two and only two positive solutions of:

| n <pk

n2 + 1 = 0    (mod pk).

If we call these Ak and Bk, then

(2) Ak + Bk = p",

and if

(3) hm\(p+l)Ai    (modp),

and

(4) Ck m h(Ak2 + l)/p*    (modp),

the Ak for k = 2, 3, • • • may be computed recursively from Ai by

(5) At+i = Ak + Ckp\

Further, for all positive n,

n  + 1 = 0    (mod p ),

if and only if n is given by one of the linear forms :

¡Ak + mpk

(6) „ = (m = 0,1,2, •••),
[Bk + mpk

and aside from these factors of n2 + 1 (obtained as p runs through all primes of

the form 4m +1) the only other prime-power factors are the obvious

(7) n  + 1 = 0    (mod 2)    for n = 1    (mod 2).

We will adopt the convention that Ai is the smaller of the two roots of (1)

for k = 1, and note that this implies:

(8) A1 < \p < Pi,

but it does not imply that Ak < Bk if k > 1. For example, let p = 5. Then Ax = 2.

Thus Ä = 1, and for k = 1, 2, 3, • • ■ we compute:

Ak = 2, 7, 57, 182, 2057, 14557, • • •

Bk = 3, 18, 68, 443, 1068, 1068, • ■ •

and note, At > B6.

We also have in this case the interesting degeneracy B& = P6. While similarly,

for p = 13, we have the degeneracy A3 = At, it can be seen from (1), and it is

important for the validity of the sieve method, that for every p:

(9)
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Now suppose we wish to factor every n + 1 for 1 ^ n g L. The sieve method

proceeds as follows:

A.) In L contiguous cells we write the corresponding values of n  + 1.

B.) We now divide out the factor of 2 for each n = 2m + 1, (m = 1, 2, • • • )

and store the quotients back into the same cells.

C.) At n = 2, we find the number 5. This implies (see a general proof below)

that 5 is a p and, corresponding to it, A\ = 2. Using formulas (2) through (6),

we factor a 5 from each n'th cell, where

Í2 + mb (m = 1,2, ■■■)
n = {

[3 + m5 (m = 0,1,2, ■■■)

and store back the quotients. Then a second 5 is factored for each

Í 7 + m25
n = (m = 0, 1, 2, • • ■ )

[18 + to25

and so on until both Ak and Bk are greater than L. By now all factors of 5 have

been removed.

D.) At n = 3, we now find the quotient 1. This means 3 is not an Ai number.

It is, in fact, reducible (see below). We so record it and move on.

E.) At n = 4, we find 17 and divide out all factors of 17 as in C.

F.) At n = 5, we find 13 and divide out all factors of 13.

G. ) Proceeding in this way we examine the contents of the n'th cell when we

get to it, and find one of two cases.

1. The quotient is 1 and no new prime factor is contained inn2 + 1.

2. The quotient is >1. In this case the quotient must be a new p = 4m + 1

and n must be its corresponding At number. Proof: Since the quotient cannot

have a factor of 2 or a prime of the form 4m — 1, every prime factor must be a

p = 4m + 1. But for such, a p, n must be A\, for, if p had occurred in an earlier

n + 1, its Ai would have been encountered earlier and p would have been fac-

tored out. By (9), n + 1 is not divisible by p2. Nor can n be simultaneously an

Ai for two distinct primes, since from (8) the quotient:

UÏ + l)/p á lAi,

and therefore cannot contain a second prime which (again by (8)) must be >2Ai.

This completes the proof, and shows we are obtaining complete factorizations

without the use of any trial divisions and without the need to know in advance

the primes of the form 4m + 1. They are, in fact, being generated (though not

in numerical order) by the process itself.

3. The Program. In the 704 program mentioned above the following changes

were desirable or expedient.

a.) The sieve was started with — (n + 1) in the n'th cell and the absolute

value of each quotient was stored back in. If no division occurred in a particular

cell the contents of this cell remained negative and this indicated that n + 1 was

a prime.
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b.) Since in a binary machine division by 2 is so simple, step B was combined

with step A.

c.) The factoring out of any prime p began when n reached its Bi instead of

its Ai. This saves time and memory and is equally valid.

d.) The linear forms, (6), are easily obtained by use of an index register. The

high efficiency of this method makes possible over 3000 divisions/sec.

e.) The sieve is done in several segments. In a memory of 32,768 words, with

4096 words reserved for an operating routine, a sieve segment of 20,000 words is

possible, since nearly 7000 words (see g) must be reserved to save the primes (and

corresponding Ai numbers) for later phases. The program itself, although quite

intricate, takes less than 300 words.

f.) An upper limit, L, of 180,000 (9 segments) was chosen since a tenth segment

would cause n + 1 to overflow the length of a 704 word. This is 2 (nearly 34.36

billion). Of course n could be made larger by using double precision.

g.) Although 127,162 of the 180,000 numbers are Ai numbers, in most cases

the corresponding p is enormous and is not used in sieving—the criterion being

p + Ai ^ L. The number of p's actually used was 6693.

h.) The program was checked by being repeated with a segment of 20,500

This changed all the phase relations in the linear forms (6). It also raised L to

184,500 and we find P(184,500) = 11,486; Ä( 184,500) = 54,162.
i.) If it were not for the "degeneracies" mentioned just before (9), a much

simpler sieve method would be possible. One would not compute the Ak and Bk

sequences and take out all factors of p at once but could instead re-factor the

A2 + nip , the B2 + nip , the A3 + mp , etc., when n came to A2, B2, A3, etc.,

respectively. This was in fact attempted, and some very rare errors ensued. For

example, one found R(20,000) = 5832 instead of the true 5833, the single error

stemming from the degeneracy B$ = Be (for p = 5) mentioned above.

j.) The main output of the program as described was the table shown above

but in a much greater detail (the interval in N being 100 instead of 10,000). The

program actually computed ir+(N) by counting the p's instead of the ir_(iV) shown.

A small modification of the program also produced a 360-page table showing the

largest prime factor in every n + 1 for n = 1 (1) 180,000. Small auxiliary tables

concerning the p-adic square roots (the Ak and Bk sequences above) and the dis-

tribution of the reducible numbers were also produced.

4. The Primes. Now consider P(N) in the statistical table. We see a steady

growth which is nearly proportional to w-(N). Since

2 h   mx

by the prime number theorem, the numbers P(N) are in excellent agreement with

the conjectured formula [3] of Hardy and Little wood:

fN dx
(10) P(N) -0.68641 /    ~

J2   In x

which therefore implies P(N)/w-(N) ~ 1.3728.
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The constant in (10) is equal to the infinite product, taken over all odd primes,

Iö['-(tK»-]'
where ( —1/p) is the Legendre symbol. It was computed by A. E. Western [4]

who also verified the substantial correctness of (10) to N = 15,000. Since the

infinite product converges too slowly, Western used a transformation of the product

due to Littlewood. The following related formula is simpler:

(10a)       0.68641-? #£    II   (W -^~t) 6 ~   ,   *  ,J) •
4 Gf(3) ,J£h \        p3 - 1/ \        p(p - l)2/

Here G is Catalan's constant, and the product is taken over the ir+ primes. More

rapid convergence may be obtained by multiplying through by the identity:

(10b) l-|Mk.&.(,+irh)I
where L(4) = X? ( —1)" (2n + l)-4. With this improvement, the first two p's,

i.e., 5 and 13, already suffice to yield the five decimal places shown.

Among the Gaussian integers, a + bi, the Gaussian primes on the positive real

axis are those of the form 4m — 1, and thus are those counted by w-(N). On the

other hand, n + i is a Gaussian prime if and only if n + 1 is a rational prime.

Therefore, the column headed "P(N)/w-(N)" shows that the +1 horizontal

line in the Gauss plane (and therefore also the — 1) has about a 37 percent greater

density of primes than the axis has. (For an attractive picture of these primes see

van der Pol's Tea Cloth, [5].)

It is of interest to mention briefly the "Gaussian twin" primes, i.e., those where

(n — l)2 + 1 and (n + l)2 + 1 are both prime. They are not at all rare. In the

last block of 1000 numbers with L = 184,500, we find no less than 9 pairs, namely:

n = 183585;183635;183685;184055;184075;184145;184185;184325;and 184495.
The last pair, 34038036037 and 34038774017, were the largest primes obtained
by this program. The conjecture suggests itself that there are infinitely many

such "twins."

It may also be mentioned that (although they were not particularly sought)

the program yielded a very large collection of "large" primes, i.e., those over 10

digits. Not only are 4830 of then2 + 1 "large" primes, but many others are equal

to twice a "large" prime. For example, 1844992 + 1 = 2-17019940501.

5. The Reducible and Irreducible Numbers. A reducible number, r, is a positive

integer whose arctangent is a linear combination, with integer coefficients, of the

arctangents of smaller positive integers:

r-l

(11) tan-1 r =  X an tan-1 n.
n-I

If no such linear combination is possible, the number is irreducible [6]. For example,

since

tan-  3 = 3 tan-  1 — tan-  2,
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3 is reducible. So are 7 and 8, while 1, 2, 4, 5, 6, 9, and 10 are irreducible. (If we

replace the arctangent function in (11) with the logarithm, we would be defining

composites and primes instead, so that the irreducibles can be thought of as the

quadratic analogue of the primes. ) John Todd showed [6] that r is reducible if and

only if the greatest prime factor of r2 + 1 is less than 2r. For each irreducible, n,

(other than 1), there is thus a unique prime p > 2n which is the greatest prime

factor of n + 1. [6, p. 526]; and this is the 1 — 1 correspondence indicated above

between A\ and p. Ax numbers are therefore irreducible, and all others except 1

are reducible. This includes all A2, A3, ■ • •, all Bi, B2, • • •, and some numbers,

such as 21, which are neither Ak nor Bk.

6. The Density of Reducibles (Heuristic). If Ä(A^) is the number of reducibles

^N, and SR(N) = R(N)/N, and if Lim^-« BR(N) exists, we call this limit the

density of the reducible numbers, and write it 5R .

(12) bR = Lim*..«, R(N)/N,   if it exists.

However, its existence is still unsettled, as is the older, and somewhat related

question :

(13) DoesP(A)^oo?

Early counts of the reducible numbers up to 5000, by J. C. P. Miller and Todd,

[6], [7], [8], were based on Todd's criterion [6] and Wrench's table [2], and indicated

that ôR(N) persisted in the vicinity of 0.29. The present paper extends N to 184,500

and shows a continuance of this state of affairs with a slow growth (in the mean)

to about 0.293.
Chowla and Todd [7] have proved that if C(N) is the number of numbers

n ^ N for which the greatest prime factor of n is greater than 2-\/n, then the

Limjv-,00 C{N)/N exists and equals In 2 = 0.693- • ■. But note that here n ranges

through all numbers, not just those of the form m2 + 1. 2/ this latter class of

numbers constituted a good sample of all the numbers as regards factorization

properties, (with a rigorous definition!) it would follow from 2\/m2 + 1 ~ 2m

and Todd's criterion of reducibility that 5R does exist and is equal to 1 — In 2 =

0.30685-••.
But, if such a deduction were possible, it would probably also follow from the

same line of reasoning (good sample concept) that the mean local density of primes

of the form m  + 1, like that of the ordinary prime sequence, would be

1_1_
In (to2 + 1) ~ 2 In to

and thus

2 J2   in m

Now in fact we have seen that P(N) remains persistently and significantly higher.

And this greater prevalence of primes is consistent with the smaller fraction of

reducibles (.293 instead of .307) which is observed. It is, of course, not precluded

that 5R(N) will rise to .307 for very much larger N. Its slow growth, mentioned
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above, seems to be of order of a/In N and to be associated with the falling off in

the mean local density of the excess primes, P(N) — t-(N). This (average)

increase of &r(N) hardly shows in the Table since In N changes so slowly and the

fluctuations are almost of the same size. Nonetheless it is there and may carry

SR(N) nearly up to 0.307.

The gross facts on which any attempted assessment of the "good sample"

concept must be based are these. The n + 1 numbers have only about 5 of all

primes, [9], as possible factors, but in "compensation" these factors occur twice

as often (see (6) above). While this may suggest a factorability of the same order

of magnitude, certainly no more exact equivalence is implied.

Assuming the future establishment of R(N) ~ Sa-N, the (deeper?) question

of 0(R(N) — Sr-N) will arise. Concerning this question—that of the uniformity

of the distribution of the reducibles—the following table and figure are informative.

Each of the 1800 intervals of 100 numbers:

100m < n ^ 100(m +1) (m = 0, 1, • • -, 1799)

has at least 17 reducible numbers and at most 42. The 52,837 reducibles ^ 180,000

are distributed as follows:

r, no. of reducibles       17]   18j   191   201 211221 231 24125)   261   27 |   281  29
v, no. of intervals 5|     6|    5|   131 22129169 [ 821 931127115411471167

301  311  321  331 341 351361371381  39 | 401  411  42
179114011471130193 ¡ 721411311161  16|   111     l|    4

In the Figure a bar graph of this distribution is compared with a binomial dis-

tribution, v (r):

(14) v - 1800   „„ff01   ,,(0.2935)r(0.7065)100-r
. r!(100 — r)\

where the "probability," 0.2935, was taken to be the final value of the mean

density, afi(180,000).

7. P-adic Numbers and Degeneracy. The sequence of the partial sums of the

infinite series:

(15) ¿i + XC*p*,

where p is a prime of the form 4m + 1 and Ai and the Ck are determined by (1)

through (4), is a convergent sequence in the p-adic sense. (See [10] for an elementary

account of p-adic valuation.) Since it converges, it represents a p-adic number,

namely, one of the two values of y/—l. This sequence, it is seen from (5), is the

sequence Ak. The other sequence, Bk, converges in the p-adic sense to the other

\/ — 1 and their sum, Ak + Bk , converges in the p-adic sense to 0.

As an example, take p = 5, and Ak = 2, 7, 57, 182, etc., as above. If we write

them in the quinary system we see that they represent the sequence obtained

from the 5-adic number

(16) •••3140223032431212. = \f=\
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200

The Continuous Curve is the

Binomial Distribution;

u=l800r°J(0.2935) (0.7065)

Fig. 1.—Distribution of the reducible numbers between 1 and 180,000 into the 1800 in-

tervals of 100.

by starting at the quinary point and taking more and more places to the left. If

we take k places and carry the computation to at least k places we find that

Ak2 + 1 = 000   - • 00.

k zeroes

so that Ak  4- 1 is divisible by p   and Ak is an approximation to y/ — 1 correct

(p-adic sense) to k places. Similarly the Bk sequence gives the complement:

(17) •••1304221412013233. = - y/-í.

The point of this review is to indicate, first, that the degeneracy B$ = Bt —

1068 mentioned above (9) is associated with the last zero digit in (17). That is,

Bi = 13233 (quinary) and so is Be. Similarly from the zero digits of (16) we find

that Ar, = Ai and Au = Ai2. Since an irrational p-adic cannot have periodic

digits, [10, p. 196], it is reasonable to conjecture that the digits are "normal."

This would imply that degenerates appear infinitely often in every Ak and Bk se-

quence for every p, and further that we should expect multiple degenerates, Ak =

Ak+1 = Ak+2, etc'. For all that, aside from the Bt = B<¡ = 1068 for p = 5 and

the Az = Ai = 239 for p = 13 already mentioned, there are no other degener-

ates ^180,000.

8. The Difficulty of the Unsettled Questions. It has often been remarked that

questions like (13) are "very difficult." The intent of this section is to assess this

difficulty. We do this by comparing the very simple Eratosthenes sieve for the
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ordinary prime sequence with the present one for n 4- 1 and note that the latter

is more complicated in the following three ways:

1.) Instead of one linear form, mp, for each prime, we have a double infinity:

Ak + mpk, Bk 4- mpk.

2. ) Instead of a zero origin we have Ak and Bk origins, which are not related to

p in any simple fashion. While A2, A3, ■ • • and Bt , B2, • • • can be computed by

the more or less complicated relations (2) through (6), A\ can arise at any n

satisfying \/p — 1 ;S n ^ (p — l)/2. Further, we have the complications of

occasional degeneracy.

3.) Finally, whereas in the Eratosthenes sieve it is not necessary to divide, but

it suffices to scratch the cells in the linear form, here we must divide the p out.

Otherwise, we would not obtain the new prime hidden in each vli 4- 1 which is

not itself prime.

9. Generalization. In conclusion, it should be stated that while we have con-

fined ourselves here to n 4- 1 the same type of sieve method is applicable to

n2 4- a, for a = ±2, ±3, etc. The main change is that these programs would be

based on the p-adic square roots of —a The sieve itself would generate those

primes for which — a is a quadratic residue, that is, all possible divisors. It is thought

that comparable statistics will be found for the primes of these forms and for the

"generalized irreducibles," that is, those n which yield a new prime factor. This is

now being investigated, [11].

Applied Mathematics Laboratory,
David Taylor Model Basin,
Washington, District of Columbia

1. L. E. Dickson, History of the Theory of Numbers, Stechert, New York, 1934, v. 1, Ch.
XVI. For example, Euler (1752) gave P (1500) = 161. See also D.H. Lehmer, Guide to Tables in
the Theory of Numbers, National Research Council, Washington, D. C, 1941, p. 31-32 and p. 45.

2. The most extensive table of all the prime factors of n2 + 1 (up to n = 31,622) is the un-
published table of J. W. Wrench, Jr. See UMT 1, MTAC, v. I, 1943, p. 26. Recently a 704 pro-
gram by the author in collaboration with Dr. Wrench raised this limit to 50,000 for a table of
the greatest prime factor. However, we now consider that type of program (with trial divisions)
to be superseded by the present sieve method.

3. G. H. Hardy & J. E. Littlewood, "Partitio numerorum III: On the expression of a
number as a sum of primes," Acta Math., v. XLIV, 1923, p. 48.

4. A. E. Western, "Note on the number of primes of the form n2 + 1," Cambridge Phil.
Soc., Proc, v. XXI, 1922, p. 108-109. Western assumes P(15000) = 1199 following Cunningham,
who omits 2 = l2 + 1. The correct value of P(15000) is 1200.

5. Fortune, June, 1958, p. 140.
6. John Todd, "A problem on arc tangent relations," American Math Monthly, v. LVI,

1949, p. 517-528.
7. S. D. Chowla & J. Todd, "The density of reducible integers," Canadian Jour, of Math,

v. I, 1949, p. 297-299. The table of R(N) to N = 5000 has many errors. It indicates Ä(5000) =
1453. A mimeographed errata sheet later circulated stated ñ(5000) = 1458, but the correct
value is 1467.

8. John Todd, Table of Arctangents of Rational Numbers, NBS, Applied Math. Series 11,
Washington, D. C, 1951.

9. While 7T+(N) and ir_(N) are asymptotically equal, x_(N) is larger for about 99.6 per cent
of the N less than 10s. See a forthcoming paper of the author, "Quadratic residues and the dis-
tribution of primes," for the statistics of this and related phenomena. That this weakness of
ir+(N) will tend to raise P(N) and lower R(N) seems clear, but no serious attempt has been
made to evaluate its effectiveness.

10. C. C. MacDuffee, An Introduction to Abstract Algebra, Wiley, New York, 1940, p. 193-
202.

11. Note added in proof, May 7, 1959. The number of primes of the forms n2 + 2, n2 — 2,
ra2 + 3, and n2 - 3 up to n = 180,000 are 5847, 15134, 9240, and 11354, respectively. These
numbers are all in good agreement with Conjecture F, [3], of Hardy and Littlewood. Fuller
details will be published later.


