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By M. Goldstein and R. M. Thaler

1. Introduction. The Bessel functions lend themselves most readily to calcu-

lation by recurrence techniques [1]. Let us consider the regular and irregular Bessel

function of real order and argument J,(x) and Yv(x). These functions both obey

the same recurrence relation, viz.

(1) F^x(x) + Fr+1(x) = -Fax),
x

where Fv(x) may be either J,(x) or Yv(x). If one is given Yv(x) and Yv+1(x) then

Eq. (1) may be used to generate the functions Y,+n(x). For p 5>> (x/2) the function

Yh(x) increases extremely rapidly with increasing order, i.e., Yß(x) ~ (2ß/x)ß

and the functions Yv+n(x) calculated from Eq. (1) yield good accuracy for large n.

However, if one is given Jv(x) and Jv+i(x), Eq. (1) gives poor accuracy for

Jv+n(x), since for u » (x/2), J^(x) ~ (2ß/x)~". On the other hand, if one is given

Jv+n(x) and J,+n+i(x), where n 5>> (x/2), then one may again recur without loss of

accuracy but this time in the direction of decreasing order. We shall first treat the

problem of using the recurrence technique in the calculation of the regular Bessel

function J„+n(x). Thus, let us find Jv+n(x), for 0 ^ v < 1 and n ^ N.

2. The Regular Bessel Function. Consider a function F,+n(x), which obeys

Eq. (1), and defined such that

F,+ m+Áx) = 0

Fy+M(x) = a

where a may be chosen to be any constant, and M ~2> N. By successive application

of the recurrence relation, Eq. (1), we may now generate Fr+M-\(x), ■ • ■ , Fr(x).

Since F,+M+l(x) and F,+M(x) can be treated as the same linear combination of

the regular and irregular Bessel functions, then

Fy+M+1(x) = aJy+M+i(x) + ßY,+M+i(x),

(3)
F,+m(x)  = aJv+M(x) + ßYv+M(x),

and, in general,

(4) Fr+n(x) = aJy+n(x) + ßYr+n(x);

so that

(5) Fv+M(x) = oJy+M(x) [l + * ̂ ±4^1,
L a J,+M(x)   \
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and

F„+ll(x)  -  aJ,+N(x) \l + ? ^±4^1 .
L a J,+N{x) J

Since M is chosen such that M y> N, then it is clear that

ß Y,+N(x)

(p.) a J*+x(.x)    = (Y,+fl(x)\ /Jr+U(x)\

K  ; ß Y,+M{x)      \Y,+M{x)) \J,+N{x) )        '

a J„+M(x)

so that for n g N

(7) Fr+n{x) S aJy+n{x).

Clearly M may be chosen so large that Fv+n(x)  = aJv+n(x) to any desired nu-

merical accuracy.

Determination of a will then yield the regular Bessel function Je+n(x) for

n ^ N. To do this one may make use of one of several addition theorems ; for ex-

ample, the addition theorem [2] :

(8) 2" E (" + 2m)J,+2m(x)x^T(p + m)/m\ = 1.
m—0

For v = 0 Eq. (8) reduces to the familiar result

00

(9) Jo(x) 4- 2 £ J2m(a0 = 1.
m=l

To any given accuracy there exists an even integer L, such that

Lli

(10) 2" E (" + 2TO)J„+2„,(a;);r~,'r(l< + to)/to! S 1.
m=0

If L ^ iV, then to the desired accuracy one may write

Lli.

(11) 2" £ {v 4- 2TO)F„+2m(x)^T(v + to)/to! S a.
m=0

If L > N, the desired accuracy may nevertheless be obtained by increasing M.

Eq. (11) may be rewritten in a form more suitable for numerical computation as:

Lli

(12) Y,<t>mF,+2m(x) = a,

where

«h = m r(l 4- v)

{v 4- 2m)(v + m - 1)
0m   —    -7-¡-Ö-^- <f>m-l ■

TO(l' 4- 2to  —  2)
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3. The Irregular Bessel Function. The irregular Bessel function Yv(x) is defined

as

(13) Yy(x) - JÁx) C0SVT ~ J-ÁX) .
sin vT

Expansions for J-t(x) in terms of J,+m(x) are readily obtained [2], for example

one may write:

(v + 2m)J.t(x) = ftV'r(l-2,)¿
i^ö       m!

(14)
T(v + m)_1 r       /   X

' r(l - m - 2v) r(l + m - v) J'+2mKX)-

Substitution of Eq. (14) into Eq. (13) yields the result that

00

(15) Yy(x)    =    J2 Jrn Jv+'lm (X),
m=0

1 /2YT2(1 + v)
7o = cot v*

where

(v + 2m)(2v + m - l)(v + m - 1)

7" " m(m - v)(v + 2m - 2) " 7"-1,

For small values of | v | the coefficient 7c may be expanded as

To

(16)
3  I Si    .    2AS3    .    1S2      .       ,2 „      .A       1    T   \     1"' V4+-^- + T + A& + y + W+'-J'

where

and

A = 0.577 215 6649 • • • + log \
¿1

s,.= Zv'n,
p=i

2

Ä3 = 1.202 056 903
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Thus, if we have obtained Jv+n(x), we may use Eq. (15) to calculate F„(x).

The Wronskian relation,

(17) Y,(x)Jr+1(x) - Y,+l{x)J,{x) - -,
TVX

gives Y,+i(x). From Y,(x), Y,+i(x) one may obtain the values of Yv+n(x), n > 1,

by recurrence, Eq. ( 1 ).

If x is close to a zero of J,(x), then Eq. ( 17) does not provide a suitable method

for obtaining Y,+1(x). To avoid this difficulty one may obtain a series for Yv+i{x)

which is analogous to the series for Y,{x), Eq. (15). This is readily accomplished

by differentiating Eq. (15) and using the relation:

(18) JrVu<aO = - Y,(x) - ^ (x) .
x dx

After some manipulation one may obtain the result

00

(19) Yy+l   =    ¿^ ¡¡mJr-t-m ,
m—0

where

, 1
fi = To - 2 7i>

» 3r ^ .
&m =  — 7m , to >  1 ,

a;

fcm+1  =   2  (7m  —  Tm+l)  , »I   è    1,

and the 7,» are as defined by Eq. (15).

4. Bessel Functions of Imaginary Argument. Analogous formulae are easily

derived for the Bessel functions of imaginary argument I,{x) £.nd K,(x). The regular

function Iy(x) obeys the recurrence relation

(20) J_i(*)- Was) ~-I,(x).
x

The irregular function Kv(x) obeys the relation

(21) K^i(i) - iÍH-i(í) = - - £.(*) •
X

It is convenient to define the function K,(x) = ( — l)"K,{x). Then /„(z) and K*(x)

both obey the same relation, viz:

(22) G_,(x) - G„+1(x) = - G„(z).
x
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One readily sees then that taking

0 = Gy+M+i = aIv+M+i(x) + ßKr+M+i(x)

(23)
a = Gv+m = aIt+M(x) + ßKv+M(x)

will once again yield

(24) G,+»(x) £¿ al,+n(x),

to any desired accuracy for M » JV ^ n. The addition theorem analogous to Eq.

(8) is

X

(25) 2"E (-l)m(" + 2ffl)/>+111(i)rr(» + m)/m\ - 1.
m—0

In order to avoid the use of an alternating series, however, it proves useful to use a

different addition theorem [2], viz:

(26) 2 (2Y rO + v)   ¿ (M-ro) m)(e-*W:r)) = 1 .
\x/   r(l + 2l>) m=0       to!

This leads to the following formula for a :

L

(27) a^ £lM?,+OT(z),
m=0

where

^o = e_IQy T(l + v)

. (v + m)(2v + to - 1)
"Am   =    -7-1-7x- Wm-1 ■

m(v + to — 1)

The irregular function Kv(x) may be treated completely analogously to Y,(x).

The irregular function K,(x) is defined as

(28) K>(x) = l\1-Áx)-IÁX)\
2 L        sin vie        J

By means of the expansion

/-<«) - ftr'rd - 2.) £ (-ir(" + ̂ )   r(, + m)
\2/ £=o to!       r(l — m — 2v)

(29)

• r(i + m - v) L+2m{x) '

one obtains the result that

(30) K,(x) = T,8mIv+2m(x),
m-0

where

2p Lsin vit      \x/ J
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r^/2Y" (,4-2

\xj     (1  - v

= (v + 2m){2v + to - 1)(» + to - 1)

ro(i» + 2m-2)(m-i0 m+1'

For small values of | v | the coefficient S0 may be expanded as

*--[>-'(f + *'-a) + '(T+i*+T)
(31)

where ^4 and <Sn are defined as in Eq. (16).

Thus, as before, if we have obtained Iy+n(x) we may use Eq. (30) to calculate

K,(x).
The Wronskian relation,

(32) Ky(x)Iy+1(x) 4- Ky+1(x)Iy(x) = -,
x

gives Kvj,i(x). From Kv(x), Ky+i(x) one may obtain the values of K,+n(x) for

n > 1 by recurrence Eq. (21). Unlike Jy, Iy(x) is not an oscillatory function and

the Wronskian can, therefore, serve to give Kv+i(x) without difficulty.

However, Eq. (30) does not yield high accuracy for x » 1, since for large x

00

(33) So/» ̂    — 2~i    Bmlv+im .
m-1

This difficulty can, in practice, be overcome by the evaluation [3], [4] of the integral

representation of Kv(x)

(34) K,(x) -  (  e-xmAy coshvydy.
■Io

5. Large Values of the Argument. If the values and derivatives of any one of

the functions Jy(x), Y?(x), I,{x), K,(x) are readily obtained, then the above

techniques are somewhat too cumbersome. In particular, if one has Y,(x),

Y,+i(x)[K,(x), K„+i(x)] then one may obtain the values of Yy+n(x)[Kp+n(x)] by a

straightforward recurrence. On the other hand, if one has Jy(x)[Iy(x)], then one

may follow the procedure of Eqs. (2-7) [Eqs. (23-24)]. However, now a is given

simply by

(35) a = Fy(x)/Jy(x)

for Jy(x), or

(36) a = Gy(x)/Iy(x)

for Iy(x).

For x ^ 10 the necessary values and derivatives of the functions Jy(x), Yy(x),

Iy(x), Ky(x) are easily obtained by the phase-amplitude method [5] for 0 ^ v < 1.
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For very large values of the argument, this technique is more suitable for computa-

tions than the methods outlined in the previous sections.

A subroutine [6] for a high speed calculating machine, the IBM 704, has been

written incorporating the methods described here for the calculation of Bessel

functions.
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