
Calculation of Transient Excitation of Ship Hulls 
by Finite Difference Methods 

By Harry Polachek 

1. Introduction. A system of finite difference equations based on the non-uniform 
beam theory is develo~d for use in the calculation of the response of a ship hull 
to transient forces. The conditions for stability of these equations (and hence the 
conditions for validity of the numerical results) are derived. The feasibility of the 
method is tested by the solution of a vibration problem for a specific hull, the 
details of which are discussed in [1] and [2]. The use of this method lends itself to 
the solution of a wide class of problems related to the structural design of vessel 
hulls or other structures subject to transient forces. The solution has been pro-
grammed and carried out on the Bureau of Ships UNIVAC System, Applied 
Mathematics Laboratory, David Taylor Model Basin. 

2. Governing Equations. The equations governing the motion of a ship hull 
based on uniform and non-uniform beam theory as developed by Timoshenko [3] 
and others are discussed in considerable detail by R. T. McGoldrick and V. L. 
Russo in [4]. A finite difference method for obtaining numerical solutions to these 
equations is presented here. For this purpose, the equations describing the damped 
vertical (or torsion-free horizontal) excitation of a ship hull subjected to a transient 
force will be used. The results may be directly extended to more general types of 
motion. The system of partial differential equations describing this type of motion, 
as given in [4] is: 

(1) 

(2) 

(3) 

(4) 

where, 
t 
x 
Y 
'Y 

M 
V 

M = (EI) iJ'Y 
iJx 

v = (KAG) 'Y - (KAG) :~ 

= time 
= distance coordinate along the longitudinal axis of a vessel 
= displacement normal to the longitudinal axis 
= rotation of transverse section about an axis normal to the (xy) 

plane (z-axis) 
= bending moment 
= net shear force in y direction 
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J.I. = apparent mass (per unit length) 
c = damping factor (per unit length) 
P = force (per unit length) acting upon ship hull 
flU' = mass moment of inertia about z axis (per unit length)-"rotary 

(EI) 
(KAG) 

inertia" 
= bending rigidity factor 
= shearing rigidity factor. 

3. Finite Difference Representation. The set of equations (1) to (4) constitutes a 
system of partial differential equations which is assumed to govern the motion of 
the hull of a vessel, as simulated by a freely vibrating non-uniform beam. If the 
state of motion of the ship hull is known at any time to , it is possible by obtaining 
the solution to these equations to determine its motion at any subsequent time. 
This system of equations may be represented approximately in finite difference 
form by replacing the partial derivatives by equivalent ratios of small finite incre-
ments. In making this substitution we will use the following notation: 

to-initial time 
XO-. -initial position 
Ilt = increment in time 
tlx = increment in length 
Ily, Il-y, IlM, tl-V = corresponding increments in the dependent variables y, -y, 

M and V, respectively . 
Xn = Xo + nllx 
Y':+t = y[xo + (n + !) Ilx, to + milt] = value of y at the position 

{ n=012 .. . 
Xo + (n + !)tlx and at the time to + milt, m = 0 i 2 .. . , , 
M:+1 = M[xo + nllx, to + (m + 1) Ilt] = value of M at the position 

. {n=012 .. . 
Xo + ntlx and at the time to + (m + l)lltj m = 0 i 2 .. . , , 

Similar notation will be used for other variables and factors in the equations. For 
quantities which do not vary with time, the superscript will be omitted. 
y 

z 
JI 

.k( / 
r-' 

1"'""':" \_.- .- 0-1- 0 - .!-o 0 0 0 0 0 0 0 0 0 0 0 

I 
......... 

FIG. lb.-Representation by non-uniform segmented beam. 
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Figures (la) and (lb) show the representation of a ship hull by means of a 
non-uniform beam and its division in twenty increments, as used in the initial 
solution. Using the above notation, the displacement of the hull at the position X2 

(the boundary point between the second and third increments) at the end of the 
mth time increment, for instance, will be represented by Y2m j its displacement at the 
center of the second increment will be represented by yr!. The average mass per 
unit length at the center of the twentieth increment will similarly be represented 
by 1-119.5 • 

To solve the above system of equations we propose to make the following specific 
finite difference substitutions in the system of equations (1) to (4): 

(5) '!.J!. = Y"H - Y .. H Y .. H (
",,2 )m m+l 2 m + m-l 

iJt2 1O+! (At)2 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) ( iJ'Y)m+l m+l m+l = 'Y,,+! - 'Y,,-! 
iJx n Ax 

The resulting system of finite difference equations is given below: 

m+l (2 m m-l) 0"+!) ( m m-l) A. Y .. H = Y"H - Y"H - - Y .. H - Y .. H J.JJ, 
10+1 

_ (Y:+l- V"m) (At)2 + P:H (At? 
1-1,,+1 Ax 1-1,,+1 

(12) 

(13) m+l _ (2 m m-l) + M':+1 - M"m (At)2 Y:H(At)2 
'Y .. H - 'YnH - 'Y"H (J ) ----;- - (J) ". ,,+t ... x ". 10+1 

(14) 

(15) 
m+l m+l 

V:+1 = (KAG)n 'Y,::+l - (KAG) .. Y"H ~ Y,.-! 

where 

In order to define completely the motion of the ship hull (non-uniform beam) it 
is required that initial and boundary conditions be fixed,. If we begin our computa-
tion when the vessel is at rest (just prior to subjecting it to any force) we have the 
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condition at to = 0, Y = 'Y = dy/dt = d'Y/dt = V = M = O. At all time, t, we 
have the condition Mo = Vo = M20 = V20 = 0, on the basis of our assumption 
that the hull is vibrating freely. 

The above system of equations (equations (12) to (15» taken together with 
the supplementary initial and boundary conditions may be summarized in the 
following form used in programming the solution on a high-speed digital calculator 
(UNIVAC System): 

(12') y::):l (1 + K 1 )(Y:-H - y:::;i) + Y:+l + K 2(V:+I - V" m) + Ka 
(13') 

(14') 

(15') 

m+l 
'Yn+i 
~,rm+l K ( m+l "'+1) 

lY.L n = 4 'Yn+t - 'Yn-t 

TT",+1 K ( m+l + "'+1) + K ( m+l m+l) 
t' n = 7 'Yn+t 'Y,,-t s Yn+t - Yn-t 

where Kl , K 2 , ••• Ks are multiplying factors which are, with the exception of K a, 
functions only of the characteristics of the vessel hull and the selected time and 
space intervals, and which may be precomputed prior to the main calculation. 
Ka may also be precomputed in the case of the application of a constant force; in 
the case the acting force is a function of time a new set of values Ka must be com-
puted for each time interval. Specifically, 

(16) K4 = (EI)" 
~' 

K _ (KAG)" 
7 - 2 ' 

1 (At)2 
K 2 =----

I'n+l ~ , 

K, = _1_._ (At)2 
(I".),,+i ~ , 

Ks = _ (K!G)". 

The initial and boundary conditions are given by the relations, 

(17) { 

0 -1 0 -1 V 0 MOo y,,+! = Yn+! = 'Y"+i = 'Yn+! = ,,= ,,= , 

Mom = M;'o = Vom = v;'o = O. 

From the above it is also possible to derive the following useful relations for the 
end-point values of y: 

(I8) 'Yo'" = 'Yt, til m 
'Y20 = 'Y19.5; til ... +~ ... 

Y20 = Y19.5 "2 'Y19.6 • 

4. Numerical Stability. In order to carry out successfully the solution of a system 
of partial differential equations such as equations (1) to (4) by finite difference 
methods, the finite difference equivalent system (12) to (15) must be stable in the 
sense discussed in [6], [7] and [8]. We will now derive the conditions under which this 
system of equations will satisfy these stability requirements. The conditions of sta-
bility are satisfied if the amplitude of a small disturbance, introduced at any time, t, 
does not increase exponentially with successive time steps. This condition may be 
stated as follows: If flF(x, t) and flF(x, t + ~t) are values of a variation (or per-
turbation) of any of the dependent variables y, 'Y, Mand V in the system, then it is 
said to be stable provided 1 flF(x, t + ~t)/flF(x, t) 1 ~ I. To determine the condi-
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tions for stability we will introduce perturbations ~y, o-r, ~M and ~V in the de-
pendent variables y, ",(, M and V, respectively. Substituting in equations (12) to 
(15) we obtain the variational equation system: 

I£"+i (~':!~ - 2~':+l + ~y':+~) + Cn+! (~':+l - ~':+~) llt 
(19) 

(20) 

(21) 

m+l m+l TTm+l 
(22) ~"+l - ~y,,-t _ L..m+1 + ~I'.. = 0 

!lx vr.. (KAG).. . 
We will assume in this analysis that within a small region in the (x, t) plane the 
coefficients (1£, I,.., etc.) of the variational functions can be treated as constants. 
A solution of the system of equations (19) to (22) can then be obtained in the form 

(23) 

r" m ,p,,+amAI UYn = ae 
o-r"m = be,Pn+amAI 

l~M" m = ce,/ln+amA I 

~Vnm = dei/ln+amAI 

where a, b, c, d are real constants and a complex. Substituting (23) in (19) to (22) 
we obtain a system of linear homogeneous equations for the quantities iL, b, c and 
d which has a non-trivial solution provided the determinant D of the coefficients is 
identically zero, where 

I'(X- 2+ X-i) + cat(l- X-i) 0 0 
(at)I;~ ;~ 
~ (eT-e-T) 

;~ ;~ 

0 ~ (X-2+X-1) 
(eT - e-T) 1 

(at) I ax 
(24) D = EI i8 ,8 

0 - (ea - e-'8) -I 0 
ax 

;~ .~ 
(eT - e-.) 1 

-I 0 (KAG) ax 

and where A = eaAI• From the above we obtain 

(25) 
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If we further assume t::..t « (p,/c) we obtain, 

(25') (:lG + 4r sin2 ~)( 4r(EI) sin2 ~ +I".~) + p,HM)2 = 0, 

or 

(26) ~~G r + [4r sin2 ~ (IIU + ~~2) + p,(t::..t)2] ~ + 16r2(EI) sin4 ~ = 0 

where 

Equation (26) above is a fourth degree polynomial equation in >.. If we designate 
one of its roots >'1 we draw the conclusion from the relation ~ = >. - 2 + >.-1 
that >'2 = 1/>'1 will be another root. For stability both I >'1 I ~ 1 and I >'2 I = 
I 1/>'1 I ~ 1. It follows that I >'1 I = I >'2 I = 1. Likewise, I >'3 I = I ~ I = 1. 
Let >'1 = cos 'Y + i sin 'Y; >'2 = cos 'Y - i sin 'Y = 1/>'1, then, 
(27) t = 2(cos'Y - 1), 

or 
-4 ~ ~ ~ O. 

On the other hand, from equation (26) we obtain 

(28) 

and 

(29) 

where, 

S = (I + p,(EI)) 
'" KAG' 

( p,(EI») r = I". - KAG ' 

It follows that, for stability, the inequalities 

U 4 . 2{3 
= rsm 2' 

(30) -4 ~ - K2 AIG [( US + p,(t::..t)2) + (U2r2 + 2p,(t::..t)2US + p,2(t::..t)4)t] ~ 0 
P, IA' 

and 

(31) -4 ~ - ~~~ [( US + p,(t::..t)2) - (U2r2 + 2p,(M)2US + p,2(t::..t)4)!] ~ 0 

must hold. It may be seen by examining the expression for ~ that its value is always 
less than or at most equal to zero and that the left hand inequalities (30) and (31) 
are satisfied if 

(32) 
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In addition, from the previous discussion it follows that tl.t must be chosen so that 

(33) tl.t« ~. 
c 

The above result may be stated as follows: 

THEOREM 

The finite difference system, consisting of equations (12) to (15), governing the 
transient motion of a ship hull, is numerically stable provided the time increment 
tl.t is chosen sufficiently small so that tl.t « pic and 

(32') (tl. )2 < p.I".(tlx)2 
t = I".(KAG) + p.(EI) + .25p(tlx)2(KAG) 

throughout the range of solution. 
Numerical instability is usually accompanied by violent variations in the com-

puted functions which invalidate the solution. This effect is shown in Figure 2. 
Whereas a time interval satisfying inequalities (32) and (33) guarantees stability, 
it should be pointed out that the interval need not necessarily be as small as indi-
cated by these inequalities. 

5. Computational Procedure. Weare now prepared to use the system of finite 
difference equations (12') to (15') and (16) to (18) to calculate the motion of a 
ship hull in response to a force acting upon it. The physical characteristics of the 
ship hull and the magnitude of the forces acting upon it (i.e. p., C, P, I,.., (EI) 
and (KAG» are calculated on the basis of the theory of elasticity from experi-
mentally determined physical quantities. (For instance, see Table 7, [51 for values 

0.002 

0.00 I 

c: 

E 0.000 .. 
iii -o 
C .. 
~ -0.00 I 
u 

" C. 
III 
i5 

-0.002 

-0.003 
0.00 0.04 0.08 0.12 
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Numerical Instability \ 

(dT =0.01~) 

~ 
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~ Solution 
~ 

(dT=0.004) - \: l'l 
1-"""'" r---.. ~ 

~ 

0.16 0.20 0.24 0.28 0.32 
Time in seconds 

FIG. 2.-'Numerical instability resulting from incorrect choice of integration interval. 
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of these parameters in the case of the SS Gopher Mariner.) From these the maxi-
muni value that can be assigned to !:It, the time increment, in order to insure nu-
merical stability may be calculated on the basis of the inequalities (32') and (33). 
Then the coefficients K I , K 2 , ••• Ks are calculated by use of equations (16). 
These should be listed at the full-interval positions or at the half-interval positions 

. (See Fig. Ib) as follows: 

K I , K 2 , K 3 , K&, Kr-listed at half-interval positions 
K., K7 , Ks --listed at full (integral) interval positions. 

From the known conditions (y, 'Y, M, and V) at time t = 0 (equation 17) we 
proceed to calculate the values of y and 'Y at t = !:It, by use of equations .( 12') and 
(13'). We then obtain the values of M and Vat t = !:It from equations (14') and 
(15'), also using the boundary relations Mo = M20 = Vo = V20 = o. We may 
now repeat this cycle any number of times, obtaining the values of the variables 
y, 'Y, M and Vat t = 2!:lt,3!:lt, ... ,etc.-until we reach any desired value of time, t. 

The above computation procedure was programmed for solution on the UNIVAC 
system, and trial solutions carried out. The results appear successful in every re-
spect. Calculations at varyi~g time intervals demonstrate the feasibility of pro-
ducing accurate solutions much beyond engineering requirements. 
Applied Mathematics Laboratory 
David Taylor Model Basin, 
Washington, District of Columbia 
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