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A Note on Gaussian Twin Primes

By Daniel Shanks

If to2 + 1 is a prime, then to + i is a Gaussian prime and conversely.

If (n — l)2 + 1 and (n + l)2 + 1 are both prime, thenn — 1 + ¿and n + 1 + i

form a pair of Gaussian twin primes [1, p. 82]. This is the case for n = 3, 5, 15,

25, 55, • • • , 184705, 184745, 184755 , • ■ ■ ; the corresponding (rational) primes
being 5 and 17 for n = 3, and 34134040517 and 34134779537 for n = 184755. Let
g(N) be the number of such pairs for 4 g n + 1 g JV.

Similarly, let 2(AT) be the number of pairs of rational twin primes, n — 1 and

n + 1, (such as n = 4, 6, 12, 18, • • • ), for 5 g n + 1 á N. Hardy and Littlewood

[2] conjectured that

(1) z(N) ~ 1.32032 f (log n)2

where

(2) 1.32032... -2^(1-^),

the product being taken over all odd primes.

By the use of a sieve argument very similar to that recently presented [3] in

support of another Hardy-Littlewood conjecture, the following asymptotic relation

was obtained :

(3) g(N) ~ 0.369322(N),

where

(4, 0JMI-- í ¿ [l- 2 (=l)<, -«-].

Here ( —1/p) is the Legendre symbol. Assuming the truth of both (3) and (1), we

have

dn
(5) g(N) ~ 0.48762 fJ2   (log n)2

We may compute the constant in (5), and therefore also that in (4), from

(6) 0.48762... =£    n    (l-*Yt+jY,
8    p_4m+l   \ p/\p   -    1/

the product being taken over all primes of the form 4/n + 1. The evaluation of the

right side of (6) is facilitated by a transformation similar to that previously used

[3] in computing the Hardy-Littlewood constants, h„ .

The number of Gaussian twin pairs, g(N), was determined for N =

500(500)185000, by counting these pairs in a recently computed table [1, p. 81] of

the greatest prime factor of n + 1 for n = 1(1)185000. A short summary is shown

in Table 1 together with a comparison of g(N) and
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Table 1

Gaussian and Rational Twin Primes

N

10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000
140000
150000
160000
170000
180000
185000

f(A-)

76
127
180
234
276
321
361
403
437
4(53
502
532
5(58
598
629
660
696
734
762

g(X)

79.1
132.1
179.8
224.3
266.8
307.8
347.5
386.2
424.0
461.2
497.7
533.6
569.0
603.9
638.4-
672.6
706.4
739.8
756.4

iii

0.961
0.961
1.001
1.043
1.034
1.043
1.039
1.044
1.031
1.004
1.009
0.997
0.998
0.990
0.985
0.981
0.985
0.992
1.007

J(A')

205
342
467
591
705
811
905

1007
1116
1224

W)

214.2
357.8
486.7
607.4
722.5
833.4
940.9

1045.7
1148.2
1248.7

S/Î

0.957
0.956
0.959
0.973
0.976
0.973
0.962
0.963
0.972
0.980

<7) §(N) = 0.48762 f
J2

dn

h   (logn)*"

Also shown are Glaisher's counts [4] of z(N) to N — 10 and

(8) z(N) = 1.32032 J
dn

(log n)2

In this range of N the deviations from unity of g(N)/g(N) and z(N)/z(N) are

about equal in magnitude, [5].
The slow oscillations of g(N)/g(N) around one have two significant conse-

quences.
1. They make improbable any value of the constant in (5) which differs more

than slightly from the theoretical value, (6).

2. They make possible a sensitive test for the correctness of the function of N

assigned to the proposed asymptote,' f2 dn/(\og n)2. For since | g(N) — §(N) \ «

g(N), even small functional modifications in g(N) would greatly alter the phase,

frequency, and amplitude of the corresponding oscillations of g(N)/g~(N) around

one. Now consider P(N), the total number of Gaussian primes of the form to + i,

[1, see Table on p. 78; p. 81]. The corresponding Hardy-Littlewood conjecture reads

P(N) ~ P(N) = 0.68641 j[  dn/log n,

and similar remarks are applicable to the function P(N) and to any oscillations of

P(N)/P(N). But if (9) and (5) are both valid, we must expect that any slow oscilla-

tions of g(N)/g(N) and P(N)/P(N) will agree in phase and frequency. For, where
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Fig. 1—Comparison of g(N)/g(N) with P(N)/P(N).

there is an excess of primes, there should generally also be an excess of twins, and

if the oscillations are slow, then any complicating higher frequency fluctuations in

the local density will largely disappear by integration. In Figure 1 we compare

graphs of g(N)/g(N) and P(N)/P(N) for N to 185000. Very close agreement is

seen in the phase and frequency of the slow oscillations. Since such an agreement

would seem improbable if either or both of (5) and (9) were false, it may be re-

garded as providing further evidence in their favor.

The difficulties that stand in the way of a proof of (3), (assuming it to be true)

are similar to those previously discussed for other problems [3]. Thus it is unlikely

that (3) will be proven without a simultaneous solution of the long outstanding

Goldbach, twin prime, and n  + 1 prime problems.

In conclusion it should be noted that the Gaussian twins on the line n + i are

by no means the only "twins" in the Gauss plane. On the line n + 2i, for instance,

we not only have twins, n = (179983, 179985), and triplets, n = (423, 425, 427),
but even one octuplet, n = (—7, —5, —3, —1, +1, +3, +5, +7).
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