
Numerical Quadrature over a Rectangular Domain
in Two or More Dimensions

Part 2. Quadrature in several dimensions, using special points

By J. C. P. Miller

1. Introduction. In Part 1 [1], several approximate formulas were developed

for quadrature over a rectangular domain (reduced to a square by scale changes)

in the form

(1.1) / =   Í      f  f(x,y) dxdy = Y, A..t f(sh, th)
•l-rh    J-rh

using some or all of a lattice of 9 or 16 points equally spaced over the square.

In this note, the restriction to equal spacing is relaxed, to allow points to be

chosen to give greater accuracy in the approximation to the integral. The restric-

tion to two dimensions or variables is also removed in some cases.

It is still assumed that the integrand f(xx, x2, ■ ■ • , xn) may be expanded in a

power series as far as we please in all variables—in other words, that for the precision

desired, the integrand may be replaced by a polynomial of suitable degree. Con-

siderations of symmetry once again ensure that we need concern ourselves only

with terms of even degree in each variable separately. By scale changes we also

make the range of integration — h to +h in each variable.

2. Expansion in Taylor Series. We need then, to find values x,,t', A, such that

1=1    dxi ■■■        f(xi, :r«, ■ • • , xn) dxa
J-h J-k

(2.1) _
= (2A)" ¿_, A,f(xi,t, Xi.t, ■■■ , xn,t)

where the points {.r,.i} are chosen in symmetrical groups which are such that

^2f(xi,t, x2,t, • • ■ , x„,t) is free of all odd powers, just as the integral / is free of

such powers by symmetry.

We expand f(xi, .r2, • • • , .r„) as a Taylor series and evaluate the integral. We

use the notation of Bickley [2], somewhat extended, namely,

s2 = £ p, = v=*     &.s = £* -£+   - »V
i    dxr t.u    dx,-dxu2

(2'2) aV *        aV
£2,2,2 =   ¿j* 7—5T—JT—5  =  3 <t> »82,2,2,2  —     Z-i*  -   o-—ït—rr—; =   Q0

t\7,v   dx,-dxu-dx,- t.u.v.w dxfoxsdxSdXu,'

where the asterisk indicates that the suffixes t, u, v, w are unequal in pairs through-

out.
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This gives, with/o for/(0, 0, 0, • • • , 0)

J m I/(2h)~ - /, + | V2/, + £ (v4 + | 3>4j /o

(25) +^(v6+4AV + ^3«)/o

131

+ j£ (v8 + 8VV + £ 3>8 + ip VV 4- if if) /. +

where we have used such formulas as

(2.4)

Si = £ pL  = (V4 - 2D4)*       & - £ jj!*  - (V6 - 3VV + 33')*
t     dXi4 í     OX«.5

Ä4.2   =   £
d6tf>

(,«   dXt*dxu
; =  (vV - 336)<*.

See David & Kendall [3] for extended tables of coefficients.

3. Summation over Sets of Points. We now choose appropriate sets of sym-

metrically placed points. We tabulate and label a few sets below.

(3.1)

Label Coordinates

0 (0, 0, • • • , 0)
a(a) (±ah, 0, • • • , 0) with

all permutations

ß(b) (±bh, ±bh,0, ■■■ ,Q)
with all permutations

l(c,d) (±ck, ±dh, 0, ••• ,0)

with all permutations

«(e) (±eh, ±eh, ±eh, 0, • ■ • , 0)

with all permutations

Number of Points

1
2»

2n(n - 1)

in(n - 1)

4n(n - l)(n - 2)/3

In the formula (2.1) we have one arbitrary constant for the point 0, two con-

stants for each set of type a, ß, or «, three constants for each set of type 7, and

so on. We naturally wish to minimize the total number of points, but we note also

that sets of type 0 and a alone are useless when dealing with terms involving 3D4,

36, Q8, etc., while sets of 0, a, ß, y, only are useless for 36 or Q8, and so on.

If we expand f(xi, Xt, • • • , z») at each point and sum over the set, we obtain
the following expressions for the sums:

(3.21) 0       /„

(3.22) a(a)        2nf0 + % a2 V2/o + % <*4S4 + % a°Se + =£ a8S8 + • • •
6! 8!

- 2nfa + ^ a2 V2 /„ + ?£ a4 (V4 - 2©4)/0

2Ä
+ Ti a (V " 3V ° + 33 "•
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+ j¡ os (V8 - 4V4 5>4 + 2D8 + 4V2 3* - 4Q8)/. 4- • • •

(3.23) ß(b)       2n(n-l)/, + 4(n~1)AVvV«

+ ^V {(* - I)?4 - 2(n - 4)£>M/o

+ ^ b6 {(n -1)V* - 3(n - 6)V2 3D4 4- 3(n - 16)3*}/o
o!

+ ^- 6* {(n - DV8 - 4(n - 8)V* »4 + 2(n 4- 6)»8
O;

4- 4(n - 43)^* - 4(n - 64)Q8}/«

+ •••

(3.24) y(c,d)        4n(n - 1)/, 4- 4(w ~ 1)fe' (c2 + d*)V2/0

+ j¡ [(n - l)(c44-d4)V4-2{(n- l)(c4 4- d4) - 6c2 d2}»4]/,

+ ^[(n-l)(c6 + d>6

-3í(n-l)(C*-(-d*) -5c2ds(c24-dî).}Vî»4

+ 3{(n- l)(c64-d*) - 15c2d2(c24-d2)}3*]/o

4-4A8[(n-l)(C8 + d8)V8

- 4{(n - l)(c8 + d8) - 7c2d2 (c4 + d4)}V4 î>4

+ 2{(n.- Dtf + d*) -28c2d2(c4-r-d4)-r-70c4d4}£>8

+ 4{(n - l)(c8 + d8) - 7c2dV 4- d4) - 70c4d4}^ 3*

- 4{ (n - l)(c8 4- d8) - 28c1 d2 (c4 4- d4) - 70c4d^tfl/o

+ •••

(3.25) «(•)       ¡n(n - 1)(» - 2)/0 + 4(w ~ ff» ~ 2) AVv2/«»

+ 1^2) Ä4e4  {(n _   1)V4 _ 2(n _ 7)¡D4)/o

-r^'e'lU- l)(n - 2)V* - 3(» - 2)(n - 11)V2 »4

4-3(n2 - 33n 4- 122)3"}/0
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+ í£e"((n - l)(n - 2)v* - 4(n - 2)(n - 15)V4 »4
o!

4- 2(n - 2)(n + 13)£>8 4- 4(n2 - 87n 4- 380)V2 36

- 4(n2 - 129n 4- 1094)Q8}/0 4- • • •

We use parts of (3.22), (3.23) and (3.25> in the present note; the rest is given for

reference.

4. Formulas Accurate to Terms in A4. We now seek a formula to give J accurately

as far as terms in h4, that is, including the first four distinct terms in (2.3). We need

a(a) and ß(b) and shall retain the point 0; this gives five disposable constants,

counting the three multipliers, which we shall now denote by .40, A a , As . This

is apparently more than we need, but in fact, the fifth constant turns out to provide

an essential extra degree of freedom.

We attempt, then, to satisfy as well as possible

(4.1) J = A,/o + £ A-af(xa) + £ Aaf(xß)

using xa and x¿ for typical sets of coordinates. If we now equate coefficients of

/o, v"2/o, V*f0 and SD4/o, we obtain:

(4.2)

Ao + 2nAa + 2n(n - l)Aß  =1

2a2Aa + 4(n - l)b2Aß = i

2a Aa + 4(n - 1)0% = J

- Aa*Aa - 8(n - 4)6% = rV

We write .40 = X and retain this, and solve for a, b, Aa , Ag . It may be noted

that the second and third equations are no longer inconsistent, as they were for

equally spaced points in Part 1 [1].

We use the last two equations to give Aa and Aß in terms of a4 and b*; then

substitute in the first two equations and eliminate a2 to give

fA0. 15(1 + 4      30,   18(5n - 7) + 9(14 - 5n)X     A

o4      2 o2 n(n — 1)

whence

(aa) *  -      30       ,        6 /(5n-14){(5n + 4)A-4j
V ' ' 62      5n 4- 4      5n + 4 \ ' 2n(n - 1)

The values of 1/62 are real for X = 0 only if n = 2.8, that is, if n = 1 or 2. When

n — 3, we must have X > 4/(5n -(- 4) for real values of b2, indicating that the fifth
disposable constant is essential.

We next consider several special cases; error terms will be considered indi-
vidually.

5. Quadrature over a Square. Case n = 2. We take X = 0 in (4.3) ; then

7 _ 3(
b*     b2

(5.1) L-S + 27 = 0
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whence

(5.21) L = 3       ^-0       Aa = 0       A,-\

or

f.^s 1      9       1       15        .        10        . 9
(5-22) ¿ = -7       3-y       A.-5       A,-üg.

The first of these (5.21) is a degenerate case; it is in fact the product-Gauss

two-point formula, with error term of order A4 instead of the expected order A6.

The second case (5.22) gives a useful approximate formula

j _ ,/<«)• . g{/(y^»,o)+/(- ^o)

+ /(o,4/Í*)+/(o,-1/5*)}

+àK%M»)+'(i*-i')
+/(-Í,Í»)+/(-Í^-Í,)}

with the main error term

tm*\ A' /     212   „„   ,   1612 „2   A ,
(5-4) 6!V-Ï4Ï75V   +4725V5)j/o-

We may also seek a formula with a = b; this turns out to be the "product-

Gauss" formula, see §6. Another idea that comes to mind is to choose X so that

a and b are both rational; this does not seem to be possible, although one or other

of a, b may take any value we please. Thus

,cz\ ,      • ,î        5        -4U     a 64 . 2 . 121(5.5) a = 1    gives   6   = ^   with   A0 = —       Aa = -      A, = —

,_-» . . A6 /4V6 4- 268V2sA ,
(5.6) and main error term    —— I -—=-1 /0 ;

2      2      ...      . 2.5.1
(5.7) 6 = 1    gives   a   - •=   with   .40 = —g       4„ = —       4„ = —

,,., ,       . . ,   A8 /2V6 4- 344V2»4\ ,
(5.8) and main error term    -f- ^ I-_-) /• •

Note the possibly useful opposition of signs in the two error terms.

6. Quadrature over Cube and Hypercube. We now consider general n.

Equation (4.4) gives the following restrictions for Aa = X if a, b are to be real-

n 1 2 3 4 5
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Since we have one disposable constant, and X = 0 is excluded for n = 3, it

is not as easy as in §5 to pick out an obviously convenient formula—there remains

scope for investigation.

One choice is of interest. This is to put a ■» b. We then find

2      .2      3        .        25n2. - 115n 4- 162
a   - b   = 5       Ao = -Ï62-

<6.2)
.        5(14 - on) . 25

Aa-Í62—    A,~m'

The points given by a = ±y/z/b, b = ±\/3/5 are the "Product-Gauss''

points with at most two non-zero coordinates. In detail we have

(6.31) w = 1   A" = t    A'-h     (Ai, = Êi)     3points

(6.32) n = 2       Ao = ^       Aa = g A, = J^ 9 points

(6.33) n = 3       A0 = ±       Aa = -JL       A* = ^ 19 points

17 ^ 2"i
(6.34) n = 4       A0 = ^       A. - -^ A, - g 33 points

We observe that for n = 1, 2 these are respectively the Gauss and Product-

Gauss formulas. For n = 3, although the error term is still of order k* in J/(2A)n,

the number of points is fewer than 3", (it is, in fact, 2n2 4-1) and the Gauss co-

efficients are lost.

The leading error term in I/(2h)n is

(6.4) _g.(_v6 + 3vV-^36)fo

which does not depend on n. Of course, 36/o = 0 if n = 1 or 2.

For comparison we quote the 3-dimensional Product-Gauss formula, which

uses the sets of points 0, a(\/3/5), ß(y/Z/b) and t(y/%/5).

,a*\ o        a        64 a 4° ^25 . 125    0„(6.5) n = 3       A* = m       Aa = —       A, = —       Ay = —   2/points

with leading error term

(6.6) IC, (-Vs 4- 3VV - 336) /„ = -i£ S6.

The form of error term for (6.33) and (6.5) suggests further the complete

elimination of 3% to yield

,ft»v „        , 430 289 . 341 . 893
(6.7) n = 3       Ao =   —-—       Aa =  ——       A3 =   ,_.w,      Ay =

5103 5103 "        10206 y       40824

27 points
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with leading error term

(6.8) i^ (_V64-3vV)/o
¿o.7!

which vanishes for a harmonic function, and, in fact, also for the example of the

next section with f(x, y, z) = cos x cos y cos z, since this is a solution of the partial

differential equation

VV - 32D4o> = 0.

In this 3-dimensional case, the further relevant error terms are

(fi{)) rS-ö, (-HV8 - 16VV + 98D8 4- 70V236)/o .
1 1 zo.ö !

7. Numerical Examples.

(i) As in Part 1 [1, §9] we use

./ = I / = }   f    í   cosí cos y dxdy = 0.70807 342
4 4 J-i J—i

for a non-harmonic illustrative example for two-dimensional formulas, and list

the integral (./), its error (E), and the estimated correction (C), which is minus

the error estimate.

Formula (5.3) with h = 1 gives

./ = 0.707362    with    K = -0.000711    and   C = 4-0.000782,

and with A = |

./ = 0.70806 42    with    E = -0.00000 92   and   C = 4-0.00000 94.

The Gauss-product formula (6.32) with A = 1 gives

./ = 0.708125    with    K = 4-0.000052   and    C = -0.000064,

and with A — \

./= 0.70807 415    with    E = -f-0.00000 073    and    C = -0.00000 076.

(ii) For an example with a harmonic integrand, as in Part 1 [1], we use

1 1   f1'-   f"
./' . 1 I = 1 /       /     sin x sinh y dxdy = 0.12922 70591.

4 4 Jo     -'o

Formula (5.3) with h = 1.2 gives

./' = 0.12922 71000    with    K = 4-0.00000 00409   and    C =  -0.00000 00409,

while formula (6.32), the Gauss-product formula, also with A = 1.2, gives

./' = 0.12922 70778   with   E = 4-0.00000 00187   and   C = -0.00000 00188.

In each of these two cases our original error estimate vanishes since the integrand

is   harmonic,   and   the   error   is   of   order   h ;   in   fact,   they   are   respectively

about S AV/o/8! and M aV/o/8!.
yll-so J 14i)
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(iii) For a three-dimensional example, we consider

J = -1 = - /     /     I    cos x cos y cos z dxdydz = sin3 1 == 0.59582 3237.
8 8 J-i J-i J-i

With A = 1, formula (6.33) gives

J = 0.59987   with   E == 4-0.00405   and    C = -0.00473

while formula (6.5), the Gauss-product formula, gives

J = 0.595889   with   E = 4-0.000066   and   C = -0.000095

and the special formula (6.7) gives

J = 0.595806    with   E = -0.000017    and    C = 4-0.000020

The last is exceptional in having an error of order A , since, as remarked in §6,

sin x sin y sin z satisfies V*<t> — 3£>40 = 0. It exhibits accidentally what may be ex-

pected with a harmonic integrand.

With A = $ these three formulas give

(6.33) J = 0.595871 with    E = 4-0.000048        and   C = -0.000050

(6.5)      ./ = 0.59582 415    with    E = 4-0.00000 091    and    C = -0.00000 100

(6.7)     J = 0.59582 319   with   £"=-0.00000 004   and   C = 4-0.00000 0054

(iv) For n = 4, we consider

J = — / = — /     /     /     /    cos x cos y cos ? cos w dxdydzdw
16 16 J-i J-i J-i J-i

= sin4 1 = 0.50136 80.

With A = 1, we have

(6.34) J = 0.514 with E = 4-0.013 and C = -0.019 33 points

(Gauss)4 / = 0.501441 with E = 4-0.000073 81 points

and with h = 5, we have

(6.34)        J = 0.50153    with    E = 4-0.00016    and    C = -0.00017

(Gauss)4 J = 0.50136 90    with   E = 4-0.00000 10.

These numerical examples illustrate that the extra points used in the Gauss-

product formulas may, sometimes at any rate, have a useful effect in reducing

error, even though the order of the error, as represented by the power of A in its

leading term, remains the same. Comparison of (6.4) and (6.6) shows a much

reduced coefficient of 36/0 in the latter, and (6.7) is a definite improvement on

the Gauss-product in the present case. More investigation is clearly needed of other

formulas and of other integrands, particularly those which do not so easily separate

into a product of integrals.
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