
Numerical Quadrature Over a Rectangular
Domain in Two or More Dimensions

Part 3. Quadrature of a Harmonic Integrand

By J. C. P. Miller

1. Introduction. In Part 1 [1], §5, formula (B), §7, formula (B'), and in §9;

also in Part 2 [2] in several places, we have seen how the error term is very much

reduced if the integrand f(x, y) is a harmonic function, that is, if V2/ = 0. In this

note we pursue further this special case, in which especially high accuracy is at-

tainable with few points.

It may not be often that the integrand will have this special form, but it seems

worthwhile to develop a few of the interesting formulas. We start by obtaining

expansions for n variables, and more extensive ones for two variables, and then

obtain and consider special quadrature formulas.

2. Expansions. As in Part 2 [2] §2, we develop f(xi, x2, ■ • • , x„) as a Taylor

series in even powers of each of the variables xr. Then, using V/o = 0 whenever it

is applicable, we obtain

J = 7/(2/0" = (2h)~n (J j f(xi, X2, ■ ■ ■ , xn) dxi dx2 ■ ■ ■ dxn

(2.1)

-/. + Í4 4 ¡dV» + A'16 aV» 4- h* (m tf + 192 e*\ f

A12 /64    12      4096   12      61184    4 „      707584   12\
+ Ï31VT       +^5~3   +~TÖ5~®Q +~TÖ5~S )fo

+ ■■■

where, as before, extended,

(2-2)    S)4/o = Z^êr-2      36/o = Z^&r,      e8/o = E
d£r2d£,2 dxfdx^dXt2 dxfdxfdxfdXu2

etc., the summations extending over all possible combinations of r, s, t, ■ • • with

no two equal.

Labelling the symmetrical sets of points as in Part 2, we have likewise the ex-

pansions for sums of values of / over the sets
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(2.31) 0 /o

(2.32) «(a)    2n/„-^4©4/„4-^36/o4-^.(3)8-2Q8)/„

- ^- (©V - (P10)/o

_ 2±±. (2©12 - 3312

- 6©4Q8 + 6S12)/o + • • •

(2.33) ß(b)    2n(n - l)/0 - ^ (n - 4)2>4/0 + ^p (n - 16)3%

+ ^p{U + 6)338-2(n-64)Q8}/„

- ^f {(n - 4)©436 - (n - 256)<P10}/„

- ^ToT"2 i2<n - 34)S)12 - 3(w + 362)312

- 6(n - 728)3)V + 6(n - 1024)S12}/0 + • • •

(2.34) y(c, d)    4n(n - l)/0 - ^ {(n - l)(c4 + d4) - 6c2d2}£>4/0

+ Ifr i(n ~ 1)(c6 + rf6) " 16<W + d2)!36/o

+ -£ [{(n - l)(c8 + d8) - 28c2d2(c4 + d4) + 70c4d4}3)8

- 2{(n - l)(c8 + d8) - 28c2d2(c4 + d4) - 70c4d4}Q8]/0

+ ...

(2.35) e(e) |n(n- l)(n-2)/o-^4(n-2)(n-7)©4/„

+ ^f (n2 - 33n + 122)36/„

+ ^p {(n - 2)(n + 13)£>8 - 2(n2 - 129n + 1094)Q8}/„

+ ••■

We recall that 0 is the origin, or centre of the square, a(a) includes all points with

one coordinate ±ah and the rest zero, ß(b) has two coordinates each independently

úzbh and the rest zero, y(c, d) has one coordinate ±ch, another ±dh and the rest

zero, and finally e(e) has three coordinates each independently ±eh with the rest

zero.
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3. Expansions over a Square. Such expansions are simpler since 36/o, Q8/o etc.,

are absent. They can be obtained by analysis with the detached operators—in

particular 2D; we proceed to obtain expansions with general terms.'

If F(z) = u + iv is a function of a complex variable z — x + iy then both

u and v are harmonic functions satisfying D2d> + Dy<¡> — 0. Likewise, if u is a

harmonic function, it can be shown that v exists such that u + iv is a function of

a complex variable. We then have

D„F = iF' = iDJF

and

(3.1) DXDV = SO2 = iD2 = -iDy.

In order to develop expansions we therefore substitute

(3.2) Dx = r1/2SD Dy = iutS>.

Consider, firstly

(3.3) / = (2Ä)"2 £ ¡_J(x, y) dx dy = ^       («"■ - e^'Ke^' - e^O/o.

The operator is

fsinh hDz sinh ÄD„      sinh i ~1/2ft£> sinh ¿1/2A3D

(3.4)

h2DxDy Ä2£>2

1 cosh (im + ¿~1/2)fc£> - cosh (i112

2 #£>'

1 cosh -\/2h S) — cos V^S)

.—1/2)&30

Ä2£>2

whence

Likewise

ÍE/U.,V«) = (eoAD* + e"^

+ +

(3.6)

a fa)

e    * + «

22r+1hir

(4r + 2) !

)/o

S4r + ■)*■

= 2 (cosh ahDx + cosh ahDy)f0

= 2 (cosh i~mahS> + cosh ¿1/2a/i£>)/0

= 4 cosh —^ © cos —^ D/o

-^-TT tf + ^-iD8 + + (-!)'
(4r)!

3û4r+-
■]/.

and

(3:7)

XI /O«*, 2/?) = 4 cosh bhDx cosh &AZ)„ /0

= 4 cosh t~ll2bh£> cosh ill2bhS>f0

= 2 (cosh &äv^2C) + cos bh\/2S))fo

= 4fl + 2Vä' 2b*hr
41        T    8! +   (4r)l +

•],
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We shall not use all the expansions given above in the present note, but it

seems useful to set out the collected results for future use.

4. Lattice-point Formulas over a Square. We consider first formulas in two

variables, and start with 9 points, putting a — b = 1 and using the sets 0, a(l),

0(1). We write

(4.1) / = //4Ä2 = Ao/(0, 0) + E Aaf{xa , ya) + £ A(f(xß , y»)

using (xa , ya) etc. as typical sets of coordinates.

Using (3.5) to (3.7), we equate coefficients of 2D4r/0, r = 0(1)2. This gives

(4.2)

with correction term

We obtain the formula

\Ao + 4Aa+   4A, = 1

IT

+ 4 Aa + 64 Aß = If

64\ h12
= -(-áAa + 256Aß

91/12!
»12/o.

(4.3)

7    -32 7

-32    1000    -32

7    -32 7

900

with main correction term —
1952 h12    I2

1365 12!      •"''

This formula is remarkably good. With the example of Part I, we have, writing

J' = h2J
,.1.2     ,l.t

r
4 Jo    Jo

Formula (4.3) gives

sin x sinh y dx dy = - (1 — cos 1.2) (cosh 1.2 — 1)

= 0.12922 70590 73675 11602

with E

J' == 0.12922 70590 72834 11029

-0.012841 00573 and C = +0.012841 01633.

5. Five-point Formulas. The high precision of (4.3) suggests that formulas of

lesser precision, with fewer points, may be useful. We use the first two of (4.2)

and take one of A0, Aa, Aß to be zero,

(i) Ao = 0 gives an eight-point formula with relatively poor precision.

(5.1)

(ii) Aa = 0 gives

(5.2)

19 56 19

56 0 56

19   56    19

300

with main correction term 40 Í**-

i    o  i

0 56   0

1 0    1

60
32 Ä8

with main correction term-— — 20 f0 .
5 9!



244 J.   C.   P.   MILLER

(iii) Aß = 0 gives

(5.3)

0    -1

-1      19

0    -1

-f- 15

28 ¥
with main correction term + —^ '— 20 /0

5 9!

We observe that (5.2) and (5.3) combine in the proportions tVtf to give

(4.3), though without an error estimate! Likewise -£ X (5.2) — 1 X (5.3) gives (B)

of Note I, and an estimate for the correction, namely-=- qj 33/0 when f(x, y)

is harmonic.

Another combination, that of (5.2) and (5.3) in equal proportions, gives a

small correction term:

(5.4)

1    -4

-4    132

1    -4

120
4Ä8

with main correction term — - — 20/0.
5 9!

Again 4 X (5.2) — 3 X (5.3) gives small multipliers:

-7- 15

(5.5)

1 3 1

3-13

1       3    1

212 h
with main correction term-— — 2O8/0.

5   9!

Evidently (4.3) is most precise, but simultaneous use of (5.2) and (5.3) gives

an idea of the precision attained, and readily yields the better result if desired.

Formula (5.5) might be helpful with desk computing, but (5.1) has little to recom-

mend it.

Numerical results for some of the formulas using the example of §4 are as follows:

Formula

(5.1)
(5.2)
(5.3)
7(B)

(5.4)

Result /'

0.12922 72986
0.12922 70974
0.12922 70255
0.12922 71932
0.12922 70615

10'° X E

+2395
+383
-336

+ 1341
+24

io'» x c

-2396
-383

+335
-1342

-24

6. General n; 2n2 + 1 Points. We consider now the n-dimensional case, n ^ 3,

using lattice points 0, a(l), /3(1). In this case the term in 36/o is relevant, and the

Q8/o term will appear in the error, except when n = 3.

We equate coefficients of /o, £)4/o, 36/o in the expansions resulting from use of

(2.1), (2.31)-(2.33) in (4.1). We obtain
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ÍA0 + 2n Aa + 2n(n - 1)   Aß = 1

(6.1) \      -   4 A* -   8(n - 4)   Aß = A
[     +   6A,+ 12(n - 16) A8-= if

while

O = - | 4AL + 8(n + 6)A9 - g] ^ 2û8/0

+ j 84« + 16(n - 64) A, + ^ } | Q8/o.

These yield

,„.>       .        -61n2 + 931n + 3780         .        61n - 496 . 61
(6-2)     Ao-3780- "-3780""       A" -      7560

with

In particular

1198 A8    ,        3619 A8
C "  945 8!a>/o+316'8!Q-/o-

,*OON o A 12048 A 626 A 61(6.33) n = 3        A0 = ——       Aa = - —-       A„ =
7560 7560    P    7560

^o^       ^   ¿   13056   A 504    i      61(6.34)   n = 4  A0 = -=——  A« = - —-   Aß7560 7560    v 7560

/*o^ r        4       13820        . 382 . 61(6.35)        n = 5       Ao =  _.-.        A« = — =—-       A^ =
7560 7560 P 7560

/flo«N a a        I4340 ^ 260 a 61(6.36)        n = 6       Ao = ^—       A« = - —-       Aß - -
7560 7560 ' 7560

As a numerical illustration f or n = 3 we consider

«/ = -/ = -/   /   /   cos j x cos ?/ cosh - zdxdy dz
8 8 jLiJLiJLi        4 4

= ^ sin I sin 1 sinh ? = 0.9800827.
15       4 4

Formula (6.33) gives J = 0.9799734 with E = -0.0000109 and C = +0.0000110.
This result is less spectacular than that of §4, for these reasons:

i) In §4, A = 0.6, here h = 1, and the correction term in (4.3) contains a high

power of A.

ii) The correction term in (6.2) is of order A8, that in (4.3) is of order A12

iii) The higher the number of dimensions, the more individual terms there are in

2D8/, 3012/, etc. In (4.3) there is only one term in SO12/, in (6.33) there are 9 in

338/.

iv) The effect of larger interval A is enhanced by the use of the factor -f, which

exceeds unity, in cosh f z; this is only partially balanced by the factor cos f x.

In spite of these points, the formula (6.2) seems a good one.

7. Quadrature over a Square; Specially Chosen Points. Since the expansions
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of §3 involve only cross-differences 334/o, it appears likely that use of sets of diag-

onal points ß will be more profitable than attempts to use sets a. It turns out that

sets 0, a(a), ß(b) and 0, a(a) both fail to give real values of a if maximum preci-

sion is sought. On the other hand, we can get several formulas making use of any

number of sets ß(bp), p = 0(1)r, both with and without the point 0.

We start first with r sets ß(bp), without the point 0. We have to find the 2r

constants Aßp , bp satisfying the equations

(7.1) D 4A?P b
4(8-1)

p "J>
= <?,_!,       s=l(l)2r

(2s - l)(4s - 3)

obtained by substitution of (3.5) to (3.7) in

(7.2) J = H Aßjidzbji, ±M)

and equating the coefficients of the first 2r coefficients of SO4. Sundry powers of 4

have been cancelled.

By familiar arguments, the bp are roots of the equation

(7.3)

1     x

Co   Ci

Ci    C2

c2

c3

(¿r      W—1      Gr-

C,

CV+i

C2r-1

-3/4
x      )These are the orthogonal polynomials for the weight function w(x) = §(x"

and range 0 ^ i á 1. The first two are

Í15x -1=0

(7.4)
(819a;2 - 438x + 11 =0.

The main correction term is obtained from the next power of D4 and yields

(7.5) C=(c,-t4^6;')?^/..

If the point 0 is included, our equations (7.1) are replaced by

(7.6)

A,+ 4SAf,= l
p-i

E 4A,,, bp' == (2s + 1)(4s + 1} C.,       s = l(l)2r

and the bp  are roots of the equation

1 X X

Ci       C2       Cs

C2       Ct       Ci

Cr+1      Cr+2      Cr+3

X

W+l

w+2

C2r

= 0
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which are the orthogonal polynomials for the weight function w(x) = %{xlli — x1'2)

for the range 0 S x ^ 1. The first two are

\Zx - 1 = 0
(7.8)

17017a;2 - 13650a; + 1745 = 0.

The main correction term is this time

(r \    94r+2,8r+4

(W - E 4A,p b™) ^^ 2D8^/„.

In each case the coefficients Aßr may be computed by standard methods.

8. Formulas for r = 1. These have 4 and 5 points respectively

(8.1) A.-\       6 = 15- C-£*£/.

fR9ï a    _4 a      .   1 h-Tw        r _   2816 A123012(8.2) Ao--       Aß--       6-3 C-1228-^ï-/o.

Written out in full:

(8.3) / = \I = MIO-1'4, 15"1/4) +/(-15-1/4, lo"1'4)

+ /(15-1/4, -15-1/4) +/(-15-1/4, -15-1'4)}

(8.4) J - \I = |/(0, 0) + *VI/(3-1/4, 3-1'4) + /( -3-1'4, 3-1'4)

+ /(3~1/4, -3~1/4) +/(-3-1/4, -31'4)}.

As a numerical test use

1        1 f1 r1
J = -r J = -  /    /   cos a; cosh y dxdy = sin 1 sinh 1 = 0.98889 77057 62865.

Formula   (8.3)   gives   0.98889   06525   with

E = -0.00000 70533 and C = +0.00000 70547

and formula  (8.4)  gives 0.98889 77062 41358 with

E = +0.094 78493 and C = -0.094 78543.

9. Formulas for r = 2. These have 8 and 9 points respectively

h = 0.40316 26030 59346 89754       Aßl = 0.22912 30654 28169 97222
(9.1)

62 = 0.84439 75319 23478 74713       Aßi = 0.02087 69345 71830 02778

... 54592    w 256 ,16   ,6,with mam correction term X T„T A 33 /0
57014685  16!

h = 0 Ao = 0.69521 80834 12925 81989

(9.2)  61 = 0.63205 02078 18796 99524   Aßl  = 0.06686 42185 46105 38162

b2 = 0.89531 63791 24106 97730   AÍ2 = 0.00993 12606 00663 16340
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...        . ..     , 16832 1024   20_»,
with main correction term _0^_r0^_ X -7^7- A 33 /0 •

7897 oötu        ZU!

For

1 r1 r1
J = - /    /   cos a; cosh ?/ da; dy

formula (9.1) gives 0.98889 77057 62853 38396 with

E = -0.013 1171243   and   C = +0.0131171555

while formula (9.2) gives 0.98889 77057 62865 09647 with

E = +0.0199   and    C = -0.01990.

With formula (9.2) we find approximately 0.82447 37090 77903 16756 for

1   f2 r2
-+. /    /   cos x cosh ydxdy = sin 2 sinh 2 = 0.82447 37090 77809 15433
16 JL2 JL2

with.0 « +0.0139401323 and C = - 0.0I39406250.

These formulae clearly have high precision, even with considerable values of A.

10. Quadrature over a Cube; Specially Chosen Points. The search for such

formulas is more difficult in 3 or more dimensions. It seems that one or more extra

available constants are needed in order to obtain real points. We shall not pursue

this, but give one simple formula for three dimensions.

We find nothing convenient by use of points ct(a), with or without 0; likewise

0 with (8(6) fails to give real points. We can, however, use 12 points ß(b) alone.

We have then to satisfy

[2n(n - l)Aß = 1

(10.1)
[864(4 - n)Aß = A ,        where n = 3.

This  yields b =   (2/5)1'4 = 0.79527 07287 67051 Aß =  1/12

with main correction term

= ( 156 b6Aß + ¡fj) jj-j 36/o = 0.005626A636/o.

With the example of §6, with integrand cos fa; cos y cosh \z (10.1) gives

J = 0.97519 with E = -0.00489 and C = +0.00494.
The only formula found that allows for the term 36/o and has an error of order

A8 is (6.33), which needs 19 points. It is evident that further search is needed.
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