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1. Introduction. In previous papers devoted to inverse osculatory interpolation,

all of which were based upon the employment of the Lagrange-Hermite formulas

for direct interpolation of f(x) (at equal intervals h for real functions or at points

of a Cartesian grid of length h for complex functions) including both the osculatory

(function with first derivative) and hyperosculatory (function with first and sec-

ond derivative) types, the writer has given the Taylor series obtained by the in-

version of the direct interpolation series about a suitable point xo, in powers of

r = [f(x) ~ f(xo)]/hf'(x0) through the term in r10 [l]-[3].* In fact, the same pro-

cedure has been employed much earlier for inverse interpolation formulas based

upon the ordinary non-osculatory Lagrange interpolation formula, which gives the

inversion series in powers of a variable r that is proportional to f(x) — f(xo)

[4]-[6].*
In this present note we give an alternative scheme for inverse osculatory or

hyperosculatory interpolation in terms of the inverse function x(f), involving

x(f) and dx(f)/df, or a;(/), dx(f)/df and dx{f)/df at separate points/, = /(a;,).

In other words, now we distinguish between the previously given point expansions

in [l]-[3], which may be characterized as special types of "inverse osculatory or

hyperosculatory" formulas and the present "osculatory or hyperosculatory in-

verse" formulas, which are analogous in structure to the osculatory or hyperoscula-

tory direct interpolation formulas.

2. Advantages of Alternative Scheme.

A. The present scheme avoids any cumbersome explicit formulas by applying

both a decomposability and uniqueness property of the Lagrange-Hermite inter-

polation formula, which has been so effective in reducing the labor in direct inter-

polation of high degree (described in detail in [3] and [7]), to those same kinds of

osculatory formulas for the inverse functions.

B. The formulas here, in terms of x(f) with either x'(f) or x'(f) and x"(f)

at / = /,, enable the user to go far beyond the 10th degree in accuracy with a frac-

tion of the computational labor required for the power series formulas. Actual

count of the number of operations for 10th degree accuracy by the older method

and 11th degree accuracy (either 6-point osculatory or 4-point hyperosculatory)

using the present scheme, showed the latter to involve only around one-fourth of

the number of operations required in the former.

C. These alternative formulas are more truly interpolatory because of the ac-

tual agreement with the inverse function and its derivatives at different points

over the complete range, and the consequent closeness of the approximation near a
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* This article is intended to be self-sufficient in the presentation of these alternative

schemes for inverse interpolation. We shall avoid as much as possible the repetition of ma-

terial in [l]-[8] to which the reader is referred for full details.
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number of points; whereas the convergence of the Taylor series expansion becomes

rapidly poorer as | r | exceeds 1.*

D. In this alternative scheme, since the /¿'s are the fixed arguments and are

unequally spaced, it hardly matters whether the corresponding xjs are equally or

unequally spaced. But for real variables, the previously given formulas in [1] and

[3] would not be applicable when the a;j's are irregularly spaced.

E. For complex osculatory or hyperosculatory inverse interpolation for z = z(f)

when f(z) is an analytic function tabulated in the complex plane with f'(z), or

with/'(z) and/"(z), there is no change in these present formulas other than the

replacement of x by z.

3. Osculatory and Hyperosculatory Inverse Interpolation Formulas. Before

giving the alternative scheme for the osculatory and hyperosculatory cases, we

should mention for the sake of completeness that even ordinary inverse interpola-

tion has a corresponding alternative form. Instead of the formulas in [4]-[6], we

may prefer the following concise rearrangement of Lagrange's interpolation poly-

nomial for the inverse function x(f) :

(1) x = Síw/52«,-,

where

(2') «i - Ai/if - ft),

and

(2") ¿,-l/TTc/,-/,).
Tim

In the above (1), (2'), (2"), as well as in all subsequent formulas, x denotes either

real or complex values, and in any 23 or H the running index i, j or k has what-

ever range is customary, say — [(n — l)/2] to [n/2] for real interpolation or over

any set of fixed grid points in complex interpolation (except for omissions indicated

beneath the symbol).

For all osculatory and hyperosculatory formulas we employ the first and second

derivatives of the inverse function x(f), namely x'(f) = l/f'(x) and x"(f) =

—f"(x)/\f(x)f, at x — Xi, the same as at f(x) = /(a;,), or more concisely, at

/ = fi. The notation x¡ and x" is used for x'(fi) and x"(/,) respectively. It is not

necessary to repeat here for the inverse function the development given in [3],

[7] and [8] for concise expressions for the direct osculatory and hyperosculatory

interpolation formulas, since those same ideas apply here.

For the inverse function, in the osculatory and hyperosculatory formulas we

* To see why, say in the real case, in a region where x(J) is one-valued and has derivatives

of high enough order, consider the remainder term in the n-point osculatory or hyperosculatory

Lagrange-Hermite formula for x(J), namely

(l/(2n)!){nL"i2[1(„-.,/2j (J - /i)l2(d2"z/(d/)2") | /-/,

or

(l/(3n)!)¡n]-^[c»-OT (/ - fi)}>(d*>x/(df)>») | ,_/{

which can become very small for an / very close to fi , even though far from/o .
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need the first and second derivatives of L/n)(/), then-point Lagrange interpolation

coefficients in / defined by

(3) £/">(/) -IK/ - fj)/U (ft - fi).

Differentiation is with respect to /, after which we set / = /,.* These derivatives

are conveniently expressed as follows:

(40 ^¿/l/llw-EiA/--/,),
df j*i

which is written more concisely, employing the notation

(5) 1/CA - fi) - cu,,

as

(4) L,u"(/,) = 23 «« •
>=¿¿

Differentiating Li(n)(f) twice and setting/ = /<, we obtain from (3),

d3L/n,(/)
(6")

d/2
= 2Z£ !/(/,-/,)(/<-/*),

and j^k

the outside factor of 2 occurring because in every (j, k) combination there will be a

(k,j) combination,/ j*- A;. The double summation occurring in (6") is avoided by

employing the identity 2  2323 ««7«« = (23 ««)* — 23«*/ so that

(6') £»"»(/«)- (£«*)*-£«.5,

which from (4) is simply

(6) £/"»•(/,) = {L,u,'(/,)}2-E^.

For osculatory interpolation, following [7] p. 213, we define

(7') a, = At*

which from (2") and (5) may be expressed as

(7) a,-={IT«<;}2,

and

(8') bi = -2Ai'L¡'hifi),

which from (2"), (4) and (5) is expressible as

(8) &,- -2 {n««}* 23«*.
J==i jVi

From (7) and (8) we define

W_ « - «,/(/ - /«)* + bi/(f - /,),

* For the occurrence of derivatives of Lagrangian coefficients in direct interpolation see

[7] p. 213, for the osculatory case, and [3] p. 105, for the hyperosculatory case.
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and

(10) ßt - at/if - ft).

Finally for the n points Xi where we have both f{x/) and f'(Xi), we find for x an

approximation by the polynomial of the (2n — l)-th degree in / = f(x), which

is equal to x¡ at / = /, and whose derivative with respect to / is equal to xi =

x'(fi)   at / = fi,  according to

(11 ) x ~ 23 («A + /W)/23 «i •

For hyperosculatory interpolation, following [3] p. 105, and taking into account

(2"), (4) and (5), we define

(i2) «i-{n "«/}•,i*i
(13) &,- -3{II«.y}323

and a quantity c, which in standard notation is given by

(14') et = Atl-tLP'Vt) + 6{L,<B)'(/.-)}2],

but when taking into account (2"), (4), (5) and (6), is expressible in present

notation by

(H) c,Hn«*nt{E«./}2+tE«<2].j=¿¿ y==ï y=¿¿
Next, using (12)-(14), we define

(15) at = at/(f - fi)3 + h/(f - ft)2 + a/{f - fi),

(16) ß< = at/if - ft)2 + bi/(f - fi),

and

(17) t, = at/2(f - /,•).

Then for the n points a;¿ where we are given f(xi), f'(Xi) and f"(xt), we find for a;

an approximation by the polynomial of the (3n — l)-th degree in/ which, to-

gether with its first and second derivative with respect to /, is equal to xt, xi

and xi' = —f"(xi)/[f'(xi)\3 at / = ft, according to

(18) x ~ 23 (atXt + ßix/ + 7¿z¿")/23 at.

In using (11) or (18), when there are many inverse interpolations with all

the values of / being close to each other so that we have the same fixed points

ft, the quantities a¿ and bt in (7) and (8), or a¿, bt and c¿ in (12)-(14) have to be

computed just once, to be used repeatedly in (9)—(11) or (15)-(18).

4. Application to Mathematical Table-Making. In a mathematical table where

the inverse function will often be wanted, we might avoid the need for a separate

table of the inverse function by supplementing the usual aids to direct interpolation

(columns of differences or derivatives) with three, five, or even seven extra col-

umns to facilitate osculatory or hyperosculatory inverse interpolation. For example,

we might add three columns of just x/ s l//'(a;¿) with a¿ and bi defined by (7)
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and (8) to aid just osculatory inverse interpolation by (9)—(11), or five columns

of xi, xi' = — f"(xi)/\f'(xi)f, a¡, bi and c¿ defined by (12)—(14) to help in just
hyperosculatory inverse interpolation in (15)-(18), or even seven columns of xi,

x", one set of functions a,, bt defined by (7), (8) and another set of functions

a<, bi, Ci, defined by (12)-(14), giving the user a choice of either osculatory or

hyperosculatory inverse  interpolation.

The use of these supplementary columns would not be restricted to tables of

functions for just regularly spaced arguments a;,. Thus we may tabulate these

auxiliary quantities a¿, 6¿ and c¡ for tables having real arguments Xi irregularly

spaced or for tables having complex arguments in a Cartesian or polar grid. Even

for osculatory or hyperosculatory direct interpolation in a table whose arguments

are irregularly spaced points x<, real or complex, if given /,-' = f'(xi), or // and

f" = f"{xi), we may tabulate a;, 6¿ by (7), (8), or a¿, &,•, c¿ by (12)-(14), and

use (9)-(ll) or (15)—(18), merely interchanging throughout in (5), (7)-(18)

the variables Xi with /,• and x with /.

In the functions a<, 6» and c<, the choice of the number n of fixed points should

be, where feasible, sufficient to ensure full accuracy in the use of (11) or (18),

which cannot be finer than the tabular uncertainty error of around «//'(a;,), the e

being the error in the value of f{xi).
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