$\frac{1}{2 \cdot 89}\left(n^{4}+1\right)$ for $n=2747,2771,2885$.
$\frac{1}{2 \cdot 97}\left(n^{4}+1\right)$ for $n=2669,2683,2749$.
New factorizations are as follows:

$$
\begin{aligned}
938^{4}+1 & =809273 \cdot 956569 \\
1060^{4}+1 & =847577 \cdot 1489513 \\
1348^{4}+1 & =940169 \cdot 3511993 \\
1512^{4}+1 & =926617 \cdot 5640361 \\
1874^{4}+1 & =914561 \cdot 13485457 \\
2100^{4}+1 & =17 \cdot 873553 \cdot 1309601 \\
2838^{4}+1 & =868841 \cdot 74663657 \\
2908^{4}+1 & =41 \cdot 940369 \cdot 1854793 \\
\frac{1}{2}\left(1155^{4}+1\right) & =830233 \cdot 1071761 \\
\frac{1}{2}\left(1191^{4}+1\right) & =935353 \cdot 1075577 \\
\frac{1}{2}\left(1509^{4}+1\right) & =872369 \cdot 2971849 \\
\frac{1}{2}\left(2635^{4}+1\right) & =857569 \cdot 28107577 \\
\frac{1}{2}\left(2765^{4}+1\right) & =908353 \cdot 32173321 \\
\frac{1}{2}\left(2977^{4}+1\right) & =17 \cdot 809041 \cdot 2855393
\end{aligned}
$$

The following factorization was omitted from my original table [1]:

$$
\frac{1}{2}\left(2055^{4}+1\right)=17 \cdot 572233 \cdot 916633
$$

The least integers still incompletely factored correspond to $n=1038$ and 1229, for even and odd values of n, respectively.
11 rue Jean Jaurès
Luxembourg
1., A. Gloden, "Table de factorisation des nombres $n^{4}+1$ dans l'intervalle $1000<n<$ 3000," Institut Grand-Ducal de Luxembourg, Archives, Tome XVI, Luxembourg, 1946, p. 7188.
2. A. Gloden, Table des Solutions de la Congruence $x^{4}+1 \equiv 0$ (mod p) pour $800,000<p$ $<1,000,000$, published by the author, rue Jean Jaurès, 11, Luxembourg, 1959.

A Note on the Solution of Quartic Equations

By Herbert E. Salzer

For any quartic equation with real coefficients,

$$
\begin{equation*}
X^{4}+A X^{3}+B X^{2}+C X+D=0 \tag{1}
\end{equation*}
$$

the following condensation of the customary algebraic solution is recommended as quickest and easiest for the computer to follow (no mental effort required). It works in every exceptional case.

[^0]Denote the four roots of (1), by X_{1}, X_{2}, X_{3}, and X_{4}. With the aid of [1], solve the "resolvent cubic equation" $a x^{3}+b x^{2}+c x+d=0$ for the real root x_{1} only, where

$$
\begin{equation*}
a=1, \quad b=-B, \quad c=A C-4 D, \quad \text { and } \quad d=D\left(4 B-A^{2}\right)-C^{2} \tag{2}
\end{equation*}
$$

Find

$$
\begin{equation*}
m=+\sqrt{\frac{1}{4} A^{2}-B+x_{1}}, \quad n=\frac{A x_{1}-2 C}{4 m} \tag{3}
\end{equation*}
$$

If $m=0$, take $n=\sqrt{\frac{1}{4} x_{1}{ }^{2}-D}$ and proceed according to the following Case I or Case II, depending upon whether m is real or imaginary.

Case I: If m is real, let $\left(\frac{1}{2} A^{2}-x_{1}-B\right)=\alpha, 4 n-A m=\beta, \sqrt{\alpha+\beta}=\gamma$, $\sqrt{\alpha-\beta}=\delta$, and finally

$$
\begin{align*}
& X_{1}=\frac{-\frac{1}{2} A+m+\gamma}{2}, \quad X_{2}=\frac{-\frac{1}{2} A-m+\delta}{2} \\
& X_{3}=\frac{-\frac{1}{2} A+m-\gamma}{2}, \quad \text { and } \quad X_{4}=\frac{-\frac{1}{2} A-m-\delta}{2} . \tag{4I}
\end{align*}
$$

Case II: If m is imaginary, say $m=i m^{\prime}$, then n is also imaginary, say $n=i n^{\prime}$. Let
$\left(\frac{1}{2} A^{2}-x_{1}-B\right)=\alpha, \quad 4 n^{\prime}-A m^{\prime}=\beta, \quad+\sqrt{\alpha^{2}+\beta^{2}}=\rho$,

$$
\sqrt{\frac{\alpha+\rho}{2}}=\gamma, \quad \frac{\beta}{2 \gamma}=\delta,
$$

and finally

$$
\left\{\begin{align*}
& X_{1}=\frac{-\frac{1}{2} A+\gamma+i\left(m^{\prime}+\delta\right)}{2}, \tag{4II}\\
& X_{3}=\frac{-\frac{1}{2} A-\gamma+i\left(m^{\prime}-\delta\right)}{2} X_{2}=\bar{X}_{1}, \text { the complex conjugate of } X_{1}, \\
& \text { and } \quad X_{4}=\bar{X}_{3}, \text { the complex conjugate of } X_{3} .
\end{align*}\right.
$$

If $\gamma=0$, we must have $\alpha=-\alpha^{\prime}, \alpha^{\prime} \geqq 0$, and formula (4II) still holds provided that in it we replace δ by $+\sqrt{\alpha^{\prime}}$.

As an example consider the quartic equation $X^{4}+X^{3}+X^{2}+X+1=0$, where $A=B=C=D=1$, so that from (2) the resolvent cubic equation is $x^{3}-x^{2}-3 x+2=0$. From [1] we find $x_{1}=0.61803$ 400. From (3), $m=$ $+\sqrt{-0.13196600}=+0.36327125 i$, so that $m^{\prime}=+0.36327125$. Then $n=$ $\frac{-1.38196600}{1.45308500 i}=+0.95105655 i$, so that $n^{\prime}=+0.95105655$. Proceeding according to Case II, $\alpha=-1.11803400, \beta=3.44095495, \rho=3.6180341, \gamma=1.1180340$ and $\delta=1.53884$ 18. Then from (4II) we obtain $X_{1}=0.3090170+0.9510565 i$, $X_{2}=\bar{X}_{1}=0.3090170-0.9510565 i, X_{3}=-0.8090170-0.5877853 i$ and
$X_{4}=\bar{X}_{3}=-0.8090170+0.5877853 i$. These roots may be verified as correct, since they are known to be the complex fifth roots of unity, namely $X_{1}=\cos 72^{\circ}+$ $i \sin 72^{\circ}, X_{2}=\cos 288^{\circ}+i \sin 288^{\circ}, X_{3}=\cos 216^{\circ}+i \sin 216^{\circ}$, and $X_{4}=$ $\cos 144^{\circ}+i \sin 144^{\circ}$.

Convair Astronautics
San Diego, California

1. H. E. Salzer, C. H. Richards \& I. Arsham, Table for the Solution of Cubic Equations, McGraw-Hill, New York, 1958.

A Conjugate Factor Method for the Solution of a Cubic

By D. A. Magula

1. Introduction. This paper gives a simple method for computing the real roots of the reduced cubic equation with real coefficients,

$$
\begin{equation*}
x^{3}+A x+B=0 \tag{1}
\end{equation*}
$$

having roots a, b, c. We assume a to be real, since every cubic equation has at least one real root.

The method consists in factoring B, and setting one factor equal to $\pm \sqrt{m}$, the other n. For all pairs m, n such that $m+n=-A, \pm \sqrt{m}$ is a root. If no such pair exists, a method of interpolation is shown.
2. Proof of Method. The reduced cubic equation (1) can be transformed, by using the relations between the roots and coefficients, into a complete cubic,

$$
\begin{equation*}
p^{3}+6 A p^{2}+9 A^{2} p+4 A^{3}+27 B^{2}=0 \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\left(-3 a^{2}-4 A\right) \tag{3}
\end{equation*}
$$

Equation (2) can be written in the form:

$$
\begin{equation*}
(p+A)^{2}(-p-4 A)=27 B^{2} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{(p+A)}{3} \sqrt{\frac{(-p-4 A)}{3}}= \pm B \tag{5}
\end{equation*}
$$

Let

$$
\begin{gather*}
m=\frac{-p-4 A}{3} \text { and } n=\frac{p+A}{3} \tag{6}\\
n \sqrt{m}= \pm B \tag{7}
\end{gather*}
$$

and

$$
\begin{equation*}
m+n=-A \tag{8}
\end{equation*}
$$

Received September 21, 1959; in revised form, December 22, 1959.

[^0]: Received December 22, 1959.

