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(3) All calculations are mod m¡ so that the digits of the mixed radix representa-

tion of [x]u can be obtained using only calculations mod m¡.

(4) The value x - x(a) can be obtained from x - x(a) = x - x(a_1) 4- x(°_1) -

x " so that the modular number x need not be remembered during the whole

process.

(5) The matrices (do) and (x.j) are computed preliminary to the iteration

procedure and are not part of it.

Ohio State University

Columbus 10, Ohio

1. B. M. Stewart, Theory of Numbers, Macmillan, 1952, p. 111-113 and p. 130.

Generation of Permutations by Transposition

By Mark B. Wells

1. Introduction. As discussed by Tompkius [1], many problems require the

generation of all n! permutations of n marks (henceforth called arrangements).

This note presents a generation scheme whereby each step consists of merely trans-

posing two of the marks. The bookkeeping is quite simple, thus this scheme is some-

what faster than either the usual dictionary order method or the Tompkins-Paige

method [1]. Also, the important property of leaving the (j + l)st position alone

until all j'. arrangements of the marks in the first j positions have been generated

is preserved.

2. Notation. An arrangement of n marks will be given by an n-tuple, (mt, m2, • ■ •

m„). A permutation, that is, an operation of permuting an arrangement of marks,

will be given in cyclic form, withP's modified by subscripts as entries. The subscripts

indicate the position of the marks to be moved in the ?i-tuple on which the permuta-

tion is operating. For example, if a — ( 1, 2, 5, 4, 3) is an arrangement of five marks

and p = (PiP>Pi)(PtPi) is a permutation, then p(a) = (2, 5, 1, 3, 4).

The bookkeeping for this generation scheme is handled, as in most schemes of

this type, by an ordered set of indices tk, k = 2, 3, • • • , n, where each tk assumes

the values 1 through /; and indicates the progress of the su bge ne rat ion of the ar-

rangements of marks in positions 1 to k. (This is essentially the "signature" dis-

cussed in [1].) Thus there are n! sets of values for the tk's, one set for each arrange-

ment of the n marks. The set tk = 1 for all /; corresponds to the initial arrangement,

and successive sets are formed in dictionary order (assuming increasing significance

with increasing subscript). An index k' gives at each step the smallest subscript k

for which tk ;** k.

3. The Generation Rules. The transposition required at each step depends on

the current value of'the index k' and on the corresponding value of tkr+i(tn+i is as-

sumed = 1 ). The rules are :

I. If k' is even, then interchange the marks in positions k' and k' — 1.
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II. a. If k' is odd and tk'+i is 2 then interchange the marks in positions k' and

k' - 1.
b. If A' is odd and 2 < tk>+l < k', then interchange the marks in positions k' and

k' - 4<+i + 1.
c. If k' is odd and U->^x ¡£ k, then interchange the marks in positions k' and i.

Before proving that these rules yield all n ! arrangements in n ! — 1 applications

(starting with a given arrangement), let us illustrate their application for n = 5.

The rules apply at step 3 to yield the arrangement given at step s + 1.

Step

1
2
3
4
5
6
7

12
13

18
19

24
25

48
49

72
73

96
97

120

1
2
I
2
1
9

1      1 1
1      1 1

1 1
1 1
1 1
1 1
2 11 1   2

2 3   2
1    1    3

2   3   4
1    1    1

2 3 4
1 1 1

2 3 4
1 1 1

2 3 4

2    3    3    1
114    1

2   3   4   2
1113

3
4

4
5

2
3
2
3
2
4

4
2

4
2

5
2

5
2

5
o

Arrangement

1       2     3     4     S

1, 2, 3, 4, 5)
2, 1, 3, 4, 5)
2, 3, 1, 4, 5)
3, 2, 1, 4, 5)
3, 1, 2, 4, 5)
1, 3, 2, 4, 5)
1, 3, 4, 2, 5)

1, 4, 3,

h í» ?«
2, 4, i,
2, 4, 3,

3, 4, 2,
3, 4, 2,

2, 5, 4,
2, 5, 4,

4, i, 5,
4, 1, 5,

5, 3, i,
5, 3, 1,

2, 5)
3, 5)

3, 5)
1, ó)

1, 5)
5. 1)

3, 1)
1, 3)

2, 3)
3, 2)

4, 2)
2, 4)

(1, 2, 3, 5, 4)

A close inspection of the above example will reveal the mechanism at work.

Following a transposition (P¡Pk) with i < k all (A; — 1)! arrangements involving

change only in positions 1 through k — 1 are generated before Pk appears again.

During a complete subgeneration of the k ! arrangements of the k leftmost positions,

the transposition (PiPk), for some particular i < k, occurs k — 1 times, each time

k' = k. The particular value of i will be k — I, k — tk+1 + 1, or 1, according to

the rule in force. To insure that no duplicate arrangements appear, the mark

initially (at the time the subgeneration begins) in position k and the marks suc-

cessively (each time (PiPk) is performed) in position i must all be distinct. This is

accomplished in two ways according as k is even or odd. For an example with k = 4,

compare the marks in position 4 at step 1, and in position 3 at steps 6, 12, and 18.
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Lemma 1. Let a == (P^P,, • • • P.i_l) with i\, i2, • • • , i*_i ^ k — 1 be a cycle and

letj < k. Then «[(PyP*)«]*""1 = (Pfk).
Proof. This is verified by direct permutation multiplication.

The significance of this lemma is the following. Let k be odd and consider any

subgeneration of k ! arrangements of the marks in the k leftmost positions. During

this subgeneration fc' will be equal to k k — 1 times, and we will have fc — 1 identi-

cal applications of rule II interspersed with k identical permutations of the first

fc — 1 positions. If, as Lemma 2 will show, this permutation is a cycle, then Lemma 1

says the effect of the entire subgeneration was as a single application of rule II on

the initial arrangement.

Lemma 2. For k even, (P,P*_i)(Pt-iP;0 [ IP-Í (P.P*-i)(P*-iP*)](P*-2P*-i) =
pk, a single cycle, where pz = (PiP2), p4 = (PiPiP2Pi) and in general,

Pk =  (PlPfcP.-iiPt-JVs • • • P^P^iíP^P*-, • • • P2) ).
Proof. Again, direct multiplication gives verification.

Thus for fc even the effect of complete subgeneration is to permute the fc marks

by a cycle. For examples of the effects given by these two lemmas, compare the ar-

rangements at steps 1 and 24 and at steps 25 and 48 (fc =4) and at steps 1 and 120

(fc = 5).
Consider now any such subgeneration beginning with the arrangement, say

(mi, m2, • • • , m*, • • • m»). With fc even, each of the fc — 1 applications of rule I

finds a new mark to put in the fcth position, since during this subgeneration 4 is

assuming the Values 1,2, • • • fc, and so by the special construction of rule II (and

Lemma 1 ), position fc — 1 contains successively, at the time of application of rule

I, m*_2, m*_i, m*_3, m*_4, • • • , mi . With fc odd, each of the fc — 1 applications of

rule II finds the fc — 1 leftmost marks permuted by a (fc — 1)-cycle (by Lemma 2),

and hence also finds a new mark to put in the fcth position. A simple induction now

shows that such subgenerations yield fc! distinct arrangements. We have proved

the following:

Theorem. The generation scheme as given above yields all n ! arrangements of n

marks in exactly n\ — 1 steps istarting from a given arrangement).

4. Remarks. As in most other generation schemes the property of changing the

jth mark only when all arrangements of the previous j — 1 marks have been gener-

ated allows significant time-savings in some problems. If following a transposition

(P,Pt+i) with i < fc 4- 1 the problem decides it does not need to use the fc! arrange-

ments formed by permuting the present fc leftmost marks, then this subgeneration

may be skipped by applying Lemma 1 or Lemma 2 according as fc is odd or even.

This immediately prepares the arrangement for the next application of (P¿P*+i).

The permutation of Lemma 2 is not a transposition, but is quite easy to code into

the scheme. An interesting question is whether or not an equally simple generation

by transposition scheme exists in which block skipping is also always done by

transposition.

With the assumption that the marks being permuted are in most problems indices

used for address modification, and thus should occupy the address portion of a

computer word, a time comparison [2] between this scheme and the Tompkins-Paige

method was made on Maniac II. With nine marks the transposition scheme gener-

ates arrangements about twenty per cent faster. In addition, the transposition
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scheme is advantageous for problems in which minimum mixing of the marks at

each step is important.
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Chebyshev Approximations to the Gamma
Function

By Helmut Werner and Robert Collinge

In this note several Chebyshev approximations are given for the function

y = T(x + 2) for x in the 0 á i ¿ 1.0 range. The approximations were obtained

from a table of T(x + 2), employing well-known methods as described in numerous

papers; see for instance [1] and the literature quoted there. The table of T(x 4- 2)

was calculated from the asymptotic expansion of log Viz) as given in [2] to provide

data accurate to at least 10~21. Compare also [3].

The asymptotic expansion of In r(z),is given by

In r(z) = (z - §) lnz - z + In y/%r + *(z)

where

K '      h 2r(2r - 1) z*-' +    AZ)'

and Br is the rth Bernoulli number.

It can be shown [2] that for z > 0 the value of $(z) always lies between the sum

of n terms and the sum of (n 4- 1 ) terms of the series, for all values of ». In ter-

minating this series with the nth term the error P„(z) will be less than

2(n + l)(2n + 1) ' ¡F*'

By truncating $(z) at the 10th term it is easily shown that for values of z ^ 13,

the error in the expansion is less than 5.5 X 10-a. We therefore replace 4>(z) by

22<-i Ai/z2'~l and calculate In T(z) for values of z in the range 13 S z á 14.
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