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1. Introduction. In the problem of incompressible boundary layer flow along a

semi-infinite flat plate against an adverse pressure gradient, the non-dimensional

free stream velocity is taken to be

Ui = 1 — x

where the plate lies along the positive part of the rr-axis. The von Mises equation

for incompressible flow is, in the usual non-dimensional notation,

,  . dz d2z
(1) Tx = uW

where

2 2
Z = U\   — u .

dz d2Z
On the plate, —- = —2(1 — x) and u is zero and so from (1), —- is infinite. This

ox dyf/2

unpleasant singularity on the plate caused Görtier [1] to abandon finite difference

methods of solution of the von Mises equation and it looked as if the comparative

simplicity of ( 1 ) could never be utilized from the point of view of numerical solution.

Thomson and the present author [2], however, showed that finite difference solutions

are possible using the von Mises equation and obtained the expansion

for the velocity in the vicinity of the plate, where a depends only on x. This expres-

sion for u incorporates the conditions of compatibility at the plate and provides a

means of obtaining a value of the skin friction on the plate from the computed values

of the velocity in the boundary layer. The skin friction is given by the value of

1 r)?
— - —- on the plate, which from (2) is equal to \a .

2 dry

The calculation in [2], however, was carried out on a desk computer and its ex-

tent was limited, particularly in the vicinity of the plate. In the present paper it is

hoped to remedy this defect by using a finite difference form of the von Mises equa-

tion which is particularly suitable for exploring the region near the plate, and

carrying out the calculation on an automatic computer.

2. The Finite Difference Equation. The four-point explicit difference replace-

ment of ( 1 ) with \f/ = rl and x = sh is

Zr.s+1   =   Azr+l,s   T~   BZT,s  ~T     ^Zr_l,s
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where A = C = 8ur,a, and B = 1 — 28ur,s, with 5 = h/f, where h and I are the

non-dimensional mesh lengths in the x- and ^-directions respectively. Since

A + B + C = I, A > 0, C > 0, it follows from Richtmyer [3] that z is bounded

provided B > 0, which leads to

¿uTiS

This is a very satisfactory condition, since it means that in the region next to the

plate where u is small, h can be chosen correspondingly large for a given value of I.

From the point of view of computation, however, it is much better to keep h con-

stant, and so I can be reduced in the vicinity of the plate. This enables the region

next to the plate to be examined in greater detail than the rest of the field.

With this in view, a distribution of nodes in the ^-direction is chosen according

to the formula

(3) ¿r = Mr+l)4 (r = °- 1,2, 3, ■••20).

In the ^-direction, the nodes are given by

x, = sh (s = 0, 1, 2, 3, •••).

The four-point forward difference replacement of ( 1 ) is now

,.s i_        « rzr+i,, + (r + l)zr-i,s - 2(r + \)zr,.
(4) Zr,s+1   =   Zr,„ +  Wr,«5 --.-7-^X1-¡—7T-

r(r + i)(r + 1)

where 5 = íi/l2 and (4) can be rearranged to give

Zr.s+l   =   DZr+l,s  +  Ezr,a  +   Fzr_liS

where

D = _^_ > 0
(r + |)(r + 1) >

E = 1        2ÔMrs

r(r + 1)

F=   s^,
r(r + \)

and D + E + F = 1. If

'<*&

it follows that E > 0, and so the theoretical solution of the difference equation (4)

is bounded. However, in view of the non-linear nature of the difference equation,

condition (5) does not necessarily guarantee the boundedness of the numerical solu-

tion of (4), and a watchful eye should be kept on the calculation in case any instability

arises.

The principal part of the truncation error in (4) is given by

1 ,2 d2z       1        3 d3z

2* 5?-*"* 5*'
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In the vicinity of the plate, from (2),

—- = - (1 - x)4>
chfr        a

■3/2

and so the truncation error at nodes near the plate becomes approximately

-1(1 - x)h.

d3Z
Thus, although —^ and higher derivatives may be very large in the neighborhood of

the plate, the truncation error can in fact be small if h is small.

3. The Calculation. In the calculation carried out in the present paper, the

starting values of z at x = 0.05 are obtained from Howarth [4] after a certain

amount of computation. The values to eight places of decimals are given in Table I.

The mesh lengths are h = 0.0005 and ¿0 = 0.01, and so 5 = 5. It can be seen from

the last column of Table I that the inequality (5) is satisfied for all r at the start

of the computation. Since the values of u decrease subsequently at nodes in the

same row, there is no danger of condition (5) being violated anywhere in the field.

The calculation was carried out explicitly using (4) on a datatron 205 high-

speed computer, and values of z obtained were rounded off after eight places of

decimals. The machine was allowed to run until a value of z was obtained on

yp = 0.01 which exceeded the boundary value on \f/ = 0 at the same station x. The

machine was then confronted with the task of taking the square root of a negative

quantity, and so ceased to print out. This actually occurred at x = 0.137. Thus,

Table I

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

0
0.01
0.03
0.06
0.10
0.15
0.21
0.28
0.36
0.45
0.55
0.66
0.78
0.91

.05

.20

.36

.53
1.71
1.90
2.10

0
0.1480
0.2620
0.3726
0.4846
0.5910
0.6845
0.7673
0.8337
0.8831
0.9165
0.9355
0.9452
0.9487
0.9499
0.9500
0.9500
0.9500
0.9500
0.9500
0.9500

0

0.90250000
0.88059600
0.83385600
0.76366924
0.66766284
0.55321900
0.43395975

31375071
0.20744431
0.12263439
0.06252775
0.02733975
0.00909696
0.00246831
0.00018999
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

r(r + 1)

2 a

6.76
11.45
16.10
20.64
25.38
30.68
36.49
43.18
50.96
60.01
70.55
82.52
95.92

110.54
126.32
143.16
161.05
180.00
200.00
221.05
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Table II

0.0500
0.0600
0.0700
0.0800
0.0900
0.1000
0.1100
0.1200
0.1250
0.1300
0.1350
0.1355
0.1360
0.1365

0.88059600
0.86538596
0.84951282
0.83344382
0.81730237
0.80118136
0.78516342
0.76935383
0.76158997
0.75401304
0.74695089
0.74632746
0.74574286
0.74521891

0.1480
0.1349
0.1244
0.1125
0.1039
0.0939
0.0833
0.0713
0.0635
0.0537
0.0357
0.0321
0.0274
0.0203

values of z were obtained in the field from x = 0.05 to x = 0.1365 at intervals of

0.0005 for twenty values of ^ between \[/ — 0 and ^ = 2.10. The values of z, to-

gether with the corresponding values of u obtained at \f/ = 0.01, are shown in Table

II for several stations x. The actual running time of the machine was determined

by the time required to print out the results. When only the values of z at yf/ = 0

and 4> = 0.01 were printed out, the machine took only four minutes for the entire

run. This gives a good indication of the simplicity of the present scheme for solving

the boundary layer equation.

4. Comparison of Results. Accuracy must not be sacrificed for speed and

simplicity of calculation, however, so the results are now compared with those ob-

tained by Leigh [5], who solved the boundary layer equations numerically with u as

a function of * and y, using the approximation of Hartree and Womersley [6]. It is

sufficient to say that the results in the present calculation at x = 0.12 agree with

those of Leigh at x = 0.1198 to within 0.5 per cent. For example, at \J/ = 0.01

x = 0.12, the node in the present calculation where the disagreement is likely to be

greatest, the value of u is 0.0713, compared with a value of u between 0.071 and

0.072 from Leigh at ^ = 0.01, a; = 0.1198. It is unwise to quote Leigh's results more

accurately at the nodes of the present calculation, as numerical integration and

interpolation are necessary to obtain them from his original calculation. The close

agreement is very encouraging considering the vastly different natures of the two

calculations. Leigh started his calculation at x = 0.10 with values taken from

Hartree [7], whereas the present calculation commenced at x = 0.05 with values

taken from Howarth. Also, Leigh solved a set of simultaneous linear equations at

each step x, whereas the present calculation involves a simple explicit calculation at

each node.

5. The Singular Solution. Returning to the calculation in this paper, it is inter-

esting to examine the solution in the neighborhood of the breakdown station Xb which

is somewhere between x = 0.1365 and x = 0.1370. By plotting log   — rr\T7 I
L     2VW¿=oJ
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against log (xb — x) for different values of xb, it is found that

[-KILJ <■<—>*
where the corresponding values of xb and q are

xb 0.1369 0.1368 0.1367 0.1366
q 0.73 0.67 0.60 0.52

The values of x considered for each xb are 0.1365, 0.1360, 0.1355, 0.1350, and at

each of these stations ( — )      is given by
\Ai/</¿_o

Z^=0.01 Z^=o

(*) - 0.01

Despite the fact that the above result is based on a breakdown point in a finite

difference calculation, there is a distinct resemblance between it and the result

fdu\        ,
l^-l     a(xs
\dy/v-o

*)è

obtained by Goldstein [8] from the asymptotic solution of the differential equation

valid in the neighborhood of the separation point, where xs is the separation point,

and ( — )     is the skin friction in the physical (x, y) plane. Consequently, it is felt
\oy/y=0

that further finite difference calculations using the von Mises variables may go a

long way towards determining the nature of the solution of the boundary layer

equation in the neighborhood of the separation point.
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