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1. This paper is concerned with a special technique, originated by J. C. P.

Miller [1, p. xvii], of computing a solution/» of a second-order difference equation

(1.1) 2/n+i + a„yn + bnVn-i = 0 (n = 1, 2, 3, • • •)

for n = 0(l)iV, N large, in cases where (1.1) has a second solution, gn , which ul-

timately grows much faster than /„ . Straightforward use of (1.1) is then not ade-

quate, since rounding errors will "activate" the second solution gn , which in turn

will eventually overshadow the desired solution /„ . Miller's device consists of

applying (1.1) in backward direction,

(1.2) y„-i = -bn~l{anyn + yn+i) (n = v — 1, v — 2, ■•• ,l;v > N),

starting with the initial values

(1.3) 2/,-i = a,        y, = 0,

where a is any real number ^0. If v is taken sufficiently large the values so obtained

turn out to be approximately proportional to /„ in the range 0 ^ n ^ N. The factor

of proportionality may then be determined, e.g., by comparing y0 with/0.

This technique was originally devised [1] for the computation of Bessel functions

I„(x), and has since then been applied to various other Bessel functions [2], [5],

[9], to Legendre functions [8], and to the repeated integrals of the error function* [6],

in erfc x = -?= i°° (¿ ~,a;)n e-* dt       (n - 0,1, 2, • • • ),
V*" Jx        nl

(1.4)
—1        Í 2        _x2 ,
i    erfc x = —= e    .

An analogous technique for first-order difference equations is described in [4, p. 25].

We shall present in Section 2 a detailed description of Miller's procedure,

paying special attention to the error term. In Section 3 we study the procedure as

applied to the computation of the functions (1.4) and show that the process con-

verges for any positive x, as v —> <». In Sections 4-5 estimates will be developed of

how large v must be taken to ensure any prescribed accuracy.

Received August 22, 1960.

* In this notation in(n ä 0) should be interpreted as the nth power of the integral operator

• -i: so that

/.00

i" erfc x = erfc x, i* erfc x =    I    in~l erfc t dt (n = 1, 2, • • •).

This notation for the repeated integrals of the error function, even though not entirely satis-

factory, has become standard.
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2. Consider the homogeneous second-order difference equation

(2.1) î/n+i + anyn + &„z/»-i = 0 (n = 1, 2, 3, • • •)

and assume that

(2.2) bn ^ 0   for all   » ¿ 1.

Let fn be the (nontrivial) solution of (2.1) to be computed for n = 0(1 )Af. We

assume

(2.3) /„ ft 0.

Let there be another solution gn of (2.1), for which

(2.4) gn ^ 0   for all   n ^ 0,

and

\u(2.5) lim = 0.

It follows readily that /„ , g„ are linearly independent.

Now let ynw(n = 0, 1, • • • , v — 2; v > N) be the result of applying (2.1) in

backward direction, starting with

(2.6) yl-i = <x,       y,M = 0 («*()).

These values, by (2.2), are well defined, and, as will presently be shown, y0M t* 0

for v sufficiently large. Let us then define

We show that for any fixed n,

(2.8) lim/„w=/„.
P-*-00

Moreover,

1 _4?2
(2.9) /Bw = /„-^ .

It is sufficient to prove (2.9), since (2.8) then follows from (2.5). Let ynw be

extended to all n > v by means of (2.1). Then for every fixed v the sequence

{ynM}(n = 0, 1, 2, • • •) is a solution of (2.1), and therefore representable in the

form

ynM = Al% + Bwgn (» à 0).

By (2.6),

A(7,-i + 5(V: = «,
(2.10)

A">/. + Bwgr = 0.
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Certainly, Aw ^ 0, since otherwise, by (2.4), AM = Bw = 0, which contradicts

the first equation in (2.10). From the second equation, Bw/Aw = —f,/g,. Therefore

*" = Aw (/„ + f£ fa) - Aw (/„ - £ fa).

If v is sufficiently large it follows because of (2.3) and (2.5) that y0w 9¿ 0. By (2.7),

/oW/n-^0») l-££

W/.-£fa)     i-{-?
\ fa      / fa Jo

which proves (2.9).

It is convenient to define

(2.11) Pn=H° U = 0,1,2,-..),
fajo

so that pn —> 0 as n —> °°, and

Jn        =  Ji
,      1     —     (py/pn)

1 — p„

The relative error of /»    is given by

(2.12) /n '   ~ /n = -^— fl - -V
/n 1   —   Pv  \ Pn/

The approximations /» obviously do not depend on a, so that a can be chosen

at will. If a high-speed computer is employed it is advisable to choose a small value

for a to guard against "overflow" in the values of ynM-

3. Now let

(3.1) /„ = in~x erfc*, X 70 (n = 0, 1, 2, • • • ).

Then /„ is a solution of

(3.2) yn+i + - yn - ¿ 2/n-i = 0 (n - 1, 2, 8, • • • )
Jh Jilt

as is readily verified by writing

C erfc x-^-i1  r (t - XY~X te"2 dt - X- f {t ~ ^ e^ dt)
i  eric x - v_ yn Jx    (n _ 1}!  *     «      n ¿    (n - 1)!   e     ^V

and evaluating the first integral by parts. A second solution of (3.2) is given by

(3.3) gn = (-îye-1 erîc (-x) (n = 0, 1, 2, • ■ •).

It is clear that the assumptions (2.2)-(2.4) are satisfied in this case. We shall now

verify (2.5), i.e.

(3.4) lim ./.erf.CX. =0 (x > 0).
„-«, i" erfc (—x)
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This then will prove the convergence of the procedure in Section 2, as applied to

(3.2).
We recall that the repeated integrals of the error function are related to the

parabolic cylinder functions Dv(x) by [7, p. 76]

%  erfc X = 2<-1>/*v^ D-"-l(x^/2)-

It is furthermore known [3, p. 123] that

ZU-xi«) =-Vire-V" I"        0 / 1 \~| (n _ „   2 bounded).
2(,+i)/2r in + A L \Vn/J

Therefore we obtain immediately for any fixed a;, real or complex,

e
¿"erfc a: = e-V2nx   i+0( 4= ) (»->«>).

vo.o; 2„r /„ + \ L        VvVJ

Hence,

¿™ erfc a; . /¡r , N

in erfc (—a;)

which proves (3.4).

4. With/„ , #„ defined by (3.1) and (3.3) we have for the quantities pn in (2.11)

(4.1) Pn = (-IT S ' rfJ3 X ̂  (« = 0,1,2, ■••).
i" 1 erfc (—x)

It is shown in this section that for any fixed x > 0 the sequence j| p„ |} is mono-

tonically decreasing, i.e.,

in erfc x     in~l erfc ( — x)
(4.2)

Pn+l

Pn
< 1 (ra è 0).

î'n_1 erfc x      in erfc (—x)

Inequality (4.2) is obvious if n = 0 and, by (1.4), equivalent to

f° (t - aO"-V2 dt f" (s + x)ne~s% ds

-  r (t - i)V" dt f° (s + a;)""1 e~sl ds > 0

if w > 0. By introducing new variables of integration, t = u -\- x, s = v — x, and

writing the left-hand side as a double integral, one obtains

(4.3) f] Mn_V_1(» - «)„-<«+*>*-<«>* du dv > 0,

where Q denotes the first quadrant « è 0, s § 0. Let Qi, Q2 denote the regions

Qi:        0 < u < v,       Q2:        0 < v < u.
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Interchanging variables of integration gives

// n-l  n—\i \   -(u+x)2-(c-x)2 j     j ¡I n-1   n—1/ \   -(t)+x)2-(u-x)2    ,       ,
If   u    v    {v — u)e dudv = — H    u    v    {v — u)e dudv.

JJq2 JJqi

Therefore (4.3) is equivalent to

ff   un-V-\v - u)[e-'u+x)^-x)i - e-^>'-<»-)'] du dv > o.
JJQl

Now, un~lvn~l{v — u) > 0 in Qi, and the same is true for the expression in brackets,

since

— (u + a;)2 — (v — x)2 > — (v + a;)2 — (u — x)2   for   u < v.

This proves (4.3), and thus (4.2).

5. We are now in a position to estimate v such that for any given integer p,

I (/»W - /.)//. I ^ 10"   for   n = 0, 1, • • • , N + 1.

Here, fnM denotes the approximations to /„ = ¿"_1 erfc x obtained by the procedure

of Section 2.

Since, by (2.12),

I   (fnM   - in)lin  |   S   | * |  U   +   | fa D   +  0(p,2),

and since | p„ |_1 increases with n, by (4.2), it is sufficient to choose v such that

(5.1) | p. | (1 + |p*+iD ^ 10"p.

From (3.5) and (4.1) we have

(5.2) | p„+1 | = e-'v^» [l + 0 Q=)J .

Assuming N large enough to neglect the O-term in (5.2) for n 2: N, the requirement

(5.1) may be simplified to

— 10-p
ç-ïs/îvx    < _

\   -L.  gi-\/2!fx '

or even to

(5.3) e-2^"" ^ .- .
2g2 V 2¡Vx

having made the right-hand bound smaller. Inequality (5.3) yields

^ (2y/Wx + pin 10 + Zn2\2

" = I-WTx-) '

which gives us the desired estimate of v.
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