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1. Introduction. In 1929 Hill [1] proposed the use of simultaneous linear con-

gruences as a method of encipherment (see also [2], [3]). If the number, n, of such

congruences be 5 or more this results in a cryptographic system of unusual security.

In this article it is shown that high-speed computers can be used in the problem of

the decipherment of the simplest case n = 2. We give first a brief description of the

system using this value of n.

The 26 letters of the alphabet are assigned numerical values according to some

arrangement of the numbers 0, 1, 2, •• -, 24, 25. For example:

ABCDEFGHI     JKLMNOPQ
19    2     21    0     4     7     6     9      17    24    11    15    14    13    12    16    18

(1.1)
RSTUVWXYZ
1      25   20   3     22    5     8     23    10

A 2 x 2 involutory matrix, mod 26, is selected to form the congruences

(L2) C2 = cPl + dP2 mod 26

where the matrix is

as)    *-[: i]. *•-'-[! ?]■ mod26-

As an illustration we use

(1.4) H = [l    ¿].

A given plain-text, say CRYPTOGRAPHY, is then divided into two-letter

groups, CR YP TO GR AP HY; each pair of letters is selected as the PiP2 of (1.2),

and C'i, C2 calculated, using the numerical equivalents of (1.1). Thus, as C R =

Pi P2 = 21 1, we find, using (1.4),

d =" 4(21) + 7(1) m 13 = N,

C% =- 9(21) + 22(1) m 3 = U,

so CR is enciphered by NU. The converse is also true, since matrix H is involutory.

The complete encipherment becomes

CR    YP   TO   GR   AP   HY
(1.5)

NU   VN   XB   WJ  GU   LL

The decipherment, knowing the matrix, is performed in an identical manner.

Received November 30, 1960.

2.54



HIGH-SPEED  COMPUTERS AND THE CASE M   =   2 OF ALGEBRAIC CRYPTOGRAPHY     255

With this in mind we may state the problem to be solved in the following way.

Given a cipher-text, obtained as in (1.5), determine the corresponding plain-text,

assuming as known the numerical alphabetic values as in (1.1). This amounts to

determining the matrix H which is to be considered as the unknown quantity. As

mentioned above, this soon becomes a complex problem with increasing n. For the

present case of n = 2, however, it can be readily solved by machine, an IBM 650

actually being used for this purpose. Two methods will be explained. The first

method has the advantage that it can be applied to extremely short messages, the

second that it can be extended with some changes to higher values of n.

2. First Method. Since the only unknowns are the four elements a, b, c, d of the

matrix H, the most direct method is to test in succession all such possible matrices.

If n > 2 this becomes impractical, but if n = 2 there are only 740 matrices, a rela-

tively small number. It is found from (1.3) that the elements must satisfy the

conditions

(2.1) a2 + bc = 1,     d2 + be = 1,      6(a + d) s 0,      cia + d) = 0,     mod 26

and it is easily shown that these imply two types of matrices,

**• '■ " - [I  -a]

with

(2.2) a2 + be = 1        mod 26

in both cases.

Type 2 contains only 8 matrices.

Type 2
a      b'     c abc
10     0 14    13    13
1      0    13 25     0     0
1    13     0 25     0    13

12    13    13 25    13     0

The remaining 732 of Type 1 can be obtained from the basic set listed below.

If we place

(a, b, c) =[:-«]•

then associated with (a, b, c) we have the set of eight

ia,b,c) i-a,b,c)

ia,c,b) i-a,c,b)

(a, -b, -c) i-a, -b, -c)

(a, -c, -b) i-a, -c, -b)
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A complete list of Type 1 matrices can be exhibited by writing one of each asso-

ciated set of 8 (or 4 or 2 in case of duplicates). Such a basic list is given below.

Type 1. Basic List.

a = 0            a = 1 a = 2        a = 3 a = 4          a = 5           a = 6

be             be be          be be           be            be

11             0      c* 1    23          1    18 1    11            12            1    17
3     9             2    13 5    15         2     9 3    21           2    14           3    23
5    21             4    13 7     7         3      6 7     9           3    18           5    19
7    15             6    13 9    17         4    11                               4     7          11    11

8    13 4    24                               4    20
10    13 5    14                               5    16
12    13 6    16                               6     9

(*c = 0, 1, 7    10                               8    10
•••,13) 8    12                             11    12

a = 7 a = 8 a = 9 a=10 a=ll o = 12 a = 13

be be be be be be be

14 1    15 1    24 15 1    10 1    13 1    14
22 35 2    12 3    19 25 3    13 27
2 15 7    17 3     8 9    15 2    18 5    13 2    20
3 10 4     6 3    12 7    13 3    22
4 14 4    19 4     9 9    13 4    10
5 6 5    10 4    22 11    13 4    23
6 18 6    17 6     6 13    13 5     8
7 8 8    16 6    19 6    11
9    12                             11    14                               8    11 8    18

10    16 10    14 9    16
12    12

Cases a = 0 and a = 13 could also be considered as Type 2, but it is convenient

to place them here. A basic Type 2 list is given below.

Type 2. Basic List.

abc

1 0 0
1 0 13

12 13 13

3. Machine Procedure. A card is punched for each of the 109 entries (matrices)

in the two basic lists, and each of these in turn generates the remaining seven asso-

ciated with it, duplicates being retained. Each matrix "of a set of 8 then performs a

deciphering operation indicated by the matrix congruence P = HC, or

o.» [p p; ? ? ?!-[: »TJ|_i 2       -14        I 6       -Í 8       i  lOj \_e      «JL<^2

G3        Cs        W        C9

Ci     Ci     Cg     Cío
mod 26

where the columns of the C-matrix represent the first five pairs of cipher letters,

and the columns of the P-matrix the corresponding pairs of the deciphered "plain-

text," these last 10 letters being printed. When all 8 matrices of a set have been

used, the next matrix of the basic lists is read and the entire process repeated. There

results 8 X 109 = 872 decipherments, each of 10 letters. An inspection of these

easily locates the correct decipherment and the corresponding matrix which is also
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printed along with the decipherment. The entire procedure requires approximately

30 minutes.

4. Second Method. We assume here a Type 1 matrix has been used for H, all

Type 2 having been tested by hand.

Let a cipher-text be represented as

(4.1) A& A2B2 • • • A ¡Bi Ai+1Bi+1 ■ ■■ AmB„

Suppose the plain-text contains the 3 consecutive letters PjQjRj and it is desired to

locate their position in (4.1). The 3 letters must be divided as

(a) PjQjRj-    or

(b) -Pi QjRj .

Assume for case (a) the cipher-text location being tested is given by

(4.1a) AiBi Ai+1Bi+1

PjQi Ri ■

Then from (1.2), in the case of a Type 1 matrix, we must have

(4.2a) Pj = aAi + bB{, (4.2c) Q¡ = cA, - aBi,

(4.2b) At = aPi + bQj (4.2d)        ß, * cPj - aQj

(4.2e) Ä,- a aAi+1 + bBi+1.

If a, b be eliminated between (4.2a, b, e) we obtain

En =(4.3)

In case (b), if the location be at

(4.1b)

Ai       Bi     P¡
Ai+i    Bi+i    R¡
Pi       Qi     Ai

== 0 mod 26

AiBi Ai+iBi+i

■Pi Qßj

we have similarly,

(4.4a) Pj meAi- aBt, (4.4c)

(4.4b) Bi+1 m cQi - aR¡, (4.4d)

(4.4e) Ri = cAi+1 — aBi+1.

Eliminating a, c from (4.4a, b, e) results in

Qi m aAi+i + bBi+1,

.B«+i = cQi — aRj,

(4.5) F„ =
Ai

Ai+i

Qi

Bi       Pi
Bi+i     Ri
Rj     Bi+i

s 0 mod 26.

We may state these results in the following theorem :

Theorem. A necessary condition that three consecutive letters PiQjR,- occur as
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plain-text in positions (4.1a) or (4.1b) of a cipher text (4.1) is that En

F a m 0, mod 26, respectively.

Equations (4.2a, b, c, d) can be solved to give

0 or

(4.6)    Da m
At   Qi
Pi   Bi

\ P-     A
Z>6 =-    V

A PiV
De s

Bi   Qi
Qi   Bi

D =
Pi   Qi
Ai   Bi

In this case (4.3) is equivalent to

(4.7) DiaAi+1 + bBi+1 - Ri) m 0,

and in addition,

mod 26,

(4.8) D2ia2 + be - 1) m 0, mod 26.

It follows that for this case, (a), if D is prime to 26, then a, b, c are determined

uniquely by (4.6), with a2 + be m 1, and all equations (4.2) are satisfied for these

values of a, b, c.

However, if D is even, mod 26, (but not 0), several solutions of (4.6) are possible,

and it is best to solve them mod 13 and mod 2. If a, b, c is a solution mod 13, then

a + 13fci, b + 13&2 > c + lShiki = 0, 1) may be solutions mod 26. To pick the

correct choices, we must solve (4.6) mod 2. There are just four solutions mod 2

satisfying a  + be = 1. These are

(4.9)    Af, = (0 1 1),        iff, = (10 0),        M3 =(10 1),       M4=(110),

which when taken in conjunction with the mod 13 solutions of (4.6) will give all

mod 26 solutions. In this case, D even, it is necessary to check (4.2e) for each such

solution.

If the seven numerical values under consideration in (4.1a) be reduced mod 2,

ABAB

0000

0001
0010

0011

0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
mi

Table 1. (Used when By = 0, and D is even, mod 26)

PQR
000 001 010 011 100 101 110

1,2
3,4
2,3

1

x
x

X

X

X

X

X

X

X

X

X

X

001

X

1,4
2,3
4

1,2
3
x
x

X

X

X

X

X

X

X

X

X

X

X

X

2,3
2,3

X

X

1
X

1
X

4
X

X

4

X

X

X

X

2,3
2,3

x
1
X

1
X

4
4
x

X

X

X

1
X

1
X

2,4
2
x
4
3
3
x
x

X

X

X

1
X

1
X

4
2,4
2
x
x
3
3

x

x

4
x
x
4
3
3
x
x

1,2
2
1
x

111

X

X

X

4
4
x
X

X

3
3
x

1
2

1,2
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then Table 1 gives the possible M* solutions of (4.2), and also all contradictions

(these resulting from a wrong location of the PjQjRj). The entries 1, 2, 3, 4 repre-

sent Mi, M2, M3, Mi of (4.9) respectively, and x represents an impossible setting.

From Table 1 we see, e.g., that the (4.1a) setting

18    5    22    5

20   9     4    •

converted mod 2 is 0101 010, giving M2 and M3 as (a b c) solutions, mod 2, whereas

the setting

18

20

5

10

22

4

or 0101 001 is impossible mod 2, and therefore mod 26 also.

Return now to the case of a (4.1b) setting. From (4.4abcd) we find

D'a =

(4.10)

Ai+i

Qi
Ri

Ai+i
D'b =

D'c

Qi
Ai+i

Bi+i
Ri

Ai+i

Qi

Rj
Bi+i

D' m Qi
Ai+i

Ri
Bi+i

If D' is prime to 26, a, b, c are uniquely determined, (4.4e) is satisfied as is a2 +

be as 1. If D' is even mod 26 inot 0), we solve (4.10) mod 13 and mod 2. In this

case, Table 2 gives the various mod 2 solutions for iab c). For each (a b c) mod 26

so obtained, (4.4e) must be tested.

5. Machine Procedure. If an assumed trigraph P,QjRi is actually present in the

plain-text of (4.1) and is tested in its correct position, say AiBi Ai+iBi+i, (called

ABAB

Table 2. (Used when F^ = 0 and D' is even, mod 26)

PQR
000 001 010 011 100 101 110 111

2,3
1
4
x
x

1
X

X

2
X

4
x
3
x

x

X

1
2,4
3
x

1
X

X

X

X

2,4
X

X

X

X

3

X

4
3

1,2
x
x
X

1
X

4
X

2
x

x
3
x

X

X

X

X

2,3,4
x
X

X

1,3
X

X

X

1,2,4
x
X

X

X

X

X

X

2,3
X

4
x
3
1
x

X

2
1
4

x

x
X

X

X

X

2,4
3
x
1
X

3
x
1

2,4
x

x

X

X

X

X

4
3
2
x
x

3
1
x
4
x

1,2
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a causal setting), one of the (a b c) solutions obtained as outlined above (assuming

D or D' ¿¿ 0 or 13) will produce the correct decipherment. If then, a list of the

highest frequency (English) trigraphs be tested in every cipher-text position the

great majority of the assumed settings will be rejected. Most of those that survive

(produce an (a b c) solution) will be accidental settings, and the few remaining will

be the causal settings. If the first few cipher pairs be deciphered using each (a b c)

solution thus derived, the correct (a b c) matrix will be immediately evident by in-

spection, since this will be the only one yielding English text. This correct matrix

will be produced from the causal settings only.

Suppose the trigraphs

PiQiRi, • • • , PjQjRj, • • • , PkQkRk

are to be tested. Such a list would include, for example, THE, AND, ING, ENT,

HER, ION, NTH, OFT. For a given ii,j), £«(P<y), (*' - 1, • • • , m - 1;¿ = 1,
• • • , k), is evaluated and if 0 mod 26 the corresponding AB AB, PQR mod 2 entries

in Table 1 (2) are located. If these are present (the M¿ solutions) then DiD') is

computed, and all (a b c) solutions obtained using (4.6) or (4.10) respectively (and

using the Table 1 (2) entries in case of multiple solutions). In case DiD') is even

(f^O) mod 26, (4.2e) or (4.4e), respectively is tested. Finally, the first five cipher

groups are deciphered with each (a b c) solution. These decipherments, together

with the corresponding (a b c), are printed. If no decipherment gives plausible plain-

text, the procedure is repeated using further trigraphs, but this would occur only

very rarely.

In an example containing 100 cipher groups (m = 100), 50 trigraphs (fc = 50)

were tested, giving some 10,000 trials to be examined. Of these, 280 gave apparent

settings with 320 iab c) possibilities. There were 20 causal settings.

In general, the longer the cipher-text the fewer the number of trigraphs that

need be tested. Discarding cases where D or D' is 0 or 13 mod 26 causes no difficulty

since sufficient trigraphs are used. The time for testing the 10,000 trials was ap-

proximately 30 minutes.
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