
Integration of the General Bivariate Gaussian
Distribution over an Offset Circle

By A. R. DiDonato and M. P. Jarnagin

1. Introduction. An efficient method is described in this paper for the numerical

evaluation by a high-speed digital computer of the integral of any uncorrelated

elliptical Gaussian distribution over the area of any arbitrarily centered circle in

the plane. Actually, by introducing at most four linear transformations of coordi-

nates, the present method can be used to cover the general problem of integrating

any correlated or uncorrelated bivariate normal distribution over an arbitrary

ellipse in the plane.

The basic integral to be evaluated is expressible in the form

(1) P = <rJ— f f P(r) exp F-Í (4 + 4)1 MV,
¿TCCFxO-y J-00 J-oo L      ¿   \ax <V/J

where the exponential represents an uncorrelated bivariate normal distribution

centered at the origin with standard deviations ax and ay . A point target T is

assumed at some arbitrary point (h, k) in the Oxy plane. The distance r is ordinary

distance [(x — h)2 + (y — k)2]112, where (x, y) is an arbitrary burst point in the

plane. The function p(r) by definition has the value one if r does not exceed a

given constant P, and p{r) is zero otherwise. This has the effect of limiting the

field of integration to a circle with center at (h, k) and radius P. Hence the integral

can be written as

(2) P = ^— /    ,_ exp    -I(^ + JU \dxdy.
¿iraxo-y Jh-R   Jk-\/Ri-(x-h)z |_    ¿ YTz        oyV J

The problem was previously studied in [2], [3], and was mentioned in [4]. The

more general problem of integrating an arbitrary integrable function of two vari-

ables over the circle has been analyzed in [5], [6] and other papers.

2. Transformations of the Basic Integral. The efficient numerical integration

of the iterated integral of equation (2) is not a straightforward procedure for the

following reasons:

(a) The behavior of the integrand in the second integration is such that for

particular values of the input parameters it attains the shape of a spike with vir-

tually all of its area contained within perhaps 1/100 or 1/1000 of the entire range

of integration [h — R, h + P] ;

(b) The slope with respect to x of the integrand in the second integration ap-

proaches infinity as x approaches h + P.

The minimum requirements for the ranges of values of the input variables were
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These were considered realistic ranges in the light of likely applications, for example,

to problems of weapons assessment and other problems of operations research.

The program which was developed, however, is valid for much wider ranges of

values, as discussed in Section 8.

If a normalizing substitution

(3) u = (x - h)/R

is made in the integral of equation (2), the range of integration on u is from —1

to 1. If the resulting integral in u is split at zero and the sign of u is changed in

the integral from —1 to 0, the integration range can be reduced to the interval

from zero to one. The difficulty of an unbounded slope of the integrand in the

neighborhood of the upper limit of integration, here u — 1, is resolved by making

another substitution,

(4) t = \/T^u

yielding P in the following form :

{Erf (du) - Erf (d^)}tdt

where

,        k + Rty/2 - P

\/2o-v

(6) Erf (¡r) - -^= f e~v' dv.
.- Vit •'o

d01-V2Vy

Equation (5) can be considered as a single integral if the Erf (dn) and Erf (efoi)

are numerically evaluated by analytic procedures rather than by quadratures. This

is actually what is done. A table of the functions Erf (x) and Erf (x) is assumed

stored in the computer at suitably small intervals of the argument. The value of

either of these functions, for any required value of the argument, is rapidly de-

termined by a table look-up and the use of no more than four additional terms of

the Taylor expansion about the nearest value for which the functions are stored.

The truncation error, or remainder term, is then subject to a rigorous predetermined

bound, as discussed of Section VI of [1]. The efficient methods of Hammer [5],

Peirce [6], and others, for integration by quadrature over multi-dimensional do-

mains, were considered at the request of the referee. It appears evident, however,

that it is more efficient to take advantage of the opportunity to perform one of the

two integrations analytically, since it can be done much more rapidly and systemat-

ically in this way than by any numerical quadrature method, and the other by

Gaussian quadrature for single integrals. A small sample of test cases was run and

this conclusion was in general verified. See Table 1.

3. Determination of Reduced Intervals of Integration. The difficulty described

in the preceding section under (a) can be virtually eliminated by changing the
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limits of integration on t to e0 and e,, where 0 ^ e0 ^ e, ^ 1, and to a lesser degree

by changing the limits of the error functions that occur in equation (5) from d0i

and d„ to do and di, where d0i ^ do ^ d, :g du •

For a given e in the range 0 < e < 1 there is a unique rectangle, S, centered

at the origin, with sides of lengths 2a{t)o-x and 2a(e)<rv , which are parallel to the

x- and y-axes, respectively (see Figure 1), such that

(7)    p=^— p r exP i" - \ (4+4)1 &*» -1 - *
¿ircrxO-y J-acx J-acy L \°~x "y / J

Transforming this integral by elementary methods, the following relation between

« and a can be derived

(8) Erf(^) = ^l

All but e of the entire bivariate distribution falls within the rectangle, by equation

(7). Therefore, in carrying out the integration over the circle, as indicated by equa-

tion (5), only that part of the interior of the circle which also lies in the interior

of the rectangle need be considered. If one integrates only over the common part

of the interior of the circle with that of the rectangle (shaded area in Figure 1),

denoting the result by P,, an error less than « in magnitude will be committed.

Thus the values of t can be restricted by the following inequalities

(9)
R-h Oax

R
< t  <

R — h + acrx

R

This can be seen by noting that the left and right boundaries of the rectangle are

the lines x = —a<rx and x = aax , and getting the corresponding value of /, using

equations (3) and (4). But the entire integration interval on t in equation (5) is

from zero to one. Hence the actual range of integration [eo, ei] will be the common

part of the interval, specified by (9), with the interval [0, 1]. The effect of this is

_I
(a<rx ,-a<7v )

Fig. 1
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that the limits e0 and e, are given by

(10a)

(10b)

(10c)

(10d)

(10e)

WR-^ñ
e, =

- h + ao-x -, ç.      h — a<Tx

if

if

ec =

1/
R — h — ao-x

R

{
0

P

h — aax

P~

h — aax

R~~

h + aax~~R~

h + aax~~R~

á 0

è 1

< 1

^ 1-

In order to keep the interval over which the integration is carried out as small

as possible, if the analogous difference e,' — e<¡ for <ry and k is smaller than the

difference e, — e0 based on <rx and h, x, <rx , and h are interchanged with y, cy , and

k respectively. This interchange is always possible because of the similar roles

played in equation ( 1 ) by a; and y and their associated parameters.

The integration interval [dm , d„] of equation (5) can also be reduced in many

cases by analysis similar to that employed above for [e0, e,j. The new limits will

be defined as follows:

(Ha)

(lib)

(12a)

(12b)

where

d,=

d„ if d„  <

a(e*) .. ,
~=- if du  ^
V2

d0i if d0i >

do =
aie*) ;

V2
if d„,  ^

0(e)

V2

q(e)

V2

o(e)

V2

..o(0

V2

i. _   i /
2« TTÎ« •

Further, since, by equation (8), Erf [a(e*)/\/2] = \/\ - t* = 1 - \e, Erf (d,,)

in equation (5) can be replaced by (1 — e/4) if (lib) holds, and similarly Erf (do,)

can be replaced by (t/4 — 1) if (12b) holds. Moreover, because of the monotonie

character of d„ and d0i as functions of t (see equations (6)), increasing and

decreasing respectively on the interval [0, 1], if (lib) holds for a particular value

of t, it will hold for all subsequent values of t in the integration, and similarly

for do, and (126). A detailed analysis is given in Appendix A of [1].

Thus the probability P as given by equation (5) is approximated within an
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arbitrarily chosen e by P,, where

(13a) Pi = ~¿ f (A +/«)lErf (d,) - Erf (d0)]t
2-V/9 Jen2\/2-le0

dt

f
,  ,  .        2          /    1 TA - Ä(l - ¿2)T\
/l+/2._exp(^--L-_^Jj

(13b) 2 .   (   if^ + p(i-¿2)T\

4. Determination of Conditions for P < 5e, P > 1 — 5e. In order to improve

the efficiency of the machine computing program, conditions were determined

such that, if the kill probability were less than 5e, a result of zero would be stored

without further computation, or a result of one would be stored if P were greater

than 1 — 5e. The details are given in [1].

5. Determination of the Gaussian Order of Integration. The method chosen for

evaluating equation (13a) numerically is that of Gaussian quadrature. The symbol

0(G) will denote the order of Gaussian multipliers. The orders stored in the NORC

program are 6, 8, 12, 16, 20, and 24 [7]. For the ranges of values of the input pa-

rameters for which the program is designed, it is never necessary to use more than

16(24) integration points over the entire interval of integration in order to obtain

results correct to three (six) decimal digits.

The rule for determining 0(G) in the program is empirical, but it was developed

by an extensive program of test cases, with adequate checking of results, as dis-

cussed in Section 9.

Two levels of accuracy were considered, three and six decimal digits for the

computed probabilities. For each accuracy level, 0(G) depends on the magnitude

of a positive quantity N given by the empirical equation

(14) N = (ei - «> [°17 */'• + ^ip-^+io] •

In the program for six-digit accuracy (e = 10~7), 0(G) is given by the following

rules :

If AT è 2.75, 0(G) = 24; if 1.4 á N < 2.75, 0(G) = 20;

if 0.8 g N < 1.4, 0(G) = 16; if 0.4 ^ N < 0.8, 0(G) = 12;

if 0.15 è N < 0.4, 0(G) = 8; if N < 0.15, O(G) = 6.

In the program for three-digit accuracy (« = 10~4) :

If N è 2.0, O(G) = 16; if 0.8 g N < 2.0, O(G) = 12;

if 0.5 Ú N < 0.8, 0(G) = 8; if N < 0.5, 0(G) = 6.

6. Computation of the Error Function (Erf (x)) and Its Derivative. The required

values of Erf (x) and its derivative, (2/v/7r)e_I , are obtained with a subroutine
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based on Taylor series expansions [8] about stored values of these functions, and

taking account of theoretical bounds on the error terms in the series. The numerical

values of the error function and its derivative are stored at intervals of 0.01 from

x = 0 to x = 3.85. Therefore this subroutine is very fast in that it requires only

two terms of the Taylor series for four-digit accuracy in the computed functions,

and only four terms for nine-digit accuracy, including in each case the rapidly

accessible stored value. These accuracy levels are acceptable in the programs for

three and six decimal digit computed probabilities, respectively, as discussed in

detail in Section VII of [1].

7. Error Analysis. A detailed error analysis of the computations is omitted

here. However, it is shown in Section VII of [1] that for every case within the per-

missible ranges of the input parameters, the total error in the computed prob-

ability, due to round-off, truncation of series, and all other causes, is less than 5e.

The quantity e is taken as 10-4 and 10~7 in the programs for three and six decimal

digit accuracy respectively.

8. Nature and Scope of the Computing Program. The program is constructed

so as to accept the five input parameters P, <rx , o-y, h, k, even though there exist

only four independent combinations. The limitations in the permissible ranges

for the present program are

tV = Tx/o-y ̂  15;

0 ^ h/cx g 600;
(15)

0 g k/o-y S 600;

P > 0.

These ranges greatly exceed the originally contemplated requirements (Section 2

above). The primary reasons for this extension were to analyze the function P

thoroughly and to allow for possible extensions of the realistic ranges in the future.

9. Discussion of Results. Since the order 0(G) of Gaussian multipliers for a

given case is determined by an empirical rule (Section 5), it was necessary to check

the validity of the rule with an extensive test program of cases spanning the space

of permissible values of the input parameters. More than 7,000 cases were com-

puted in this test program, and the accuracy of the results was verified by doubling

the number of integration points, and also in borderline cases by checking against

values computed by an independent iterative Simpson's rule routine. In addition,

the tables of values given in [2] and [3] were computed independently by the present

program. The results agreed, within one unit in the last place retained by the

respective authors, except for one discrepancy in the case of each author, where

the difference was more than one unit. In these two cases, as well as in all other

cases of the total of more than 7,000, it was established that the results given by

the present program were correct to the specified extent, three or six decimal digits.

The input values used in the test program are given in Table III of [1]. Briefly,

ax — 1, o-y = 1, 3, 6, 10, 15; h and k range from 0 to 600. For a given set of values
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Table 1

6.6282
8.3092
6.5918
8.0172
7.1589
0.14929
2.5205
2.9999
2.7705
3.4633
4.2076
4.9999
2.3400
2.9588
4.5226
6.4408
8.6568
1.5754
3.8489
6.7930
8.6617
1.7024
4.3806
3.1229
4.6891
6.5438
4.1553
7.8804
4.000
4.000
4.000
4.000
4.000
8.000
8.000
8.000
8.000
8.000
8.000
8.000
8.000
8.000
8.000

10.279
12.201

10

ay

3
3
3
6
3
3
3
3
3
6
6

2
2
2

10
10
0
0
0
0
0
0
0
4
4
4
4
4
2.5
2.5
2.5
4
1.5
1.5
1.5
1.5
1.5
0.75
4
0.86
2.58
3.44
4.3
5.16

17.20
20.64
24.08
0
4.64
6.96
9.28

11.60
13.92
16.24
2.5
2.5

0.2
0.2
0.2
5
5
0
0
0
2
2
2
2
4
4
4
4
4
2
2
2

20
5
5

10
10
10
3
3
1.3
1.3
1.3
1.3
1.3
4.29
4.29
4.29
4.29
4.29
4.29
4.29
4.29
4.29
4.29
2
2

0(G)

16
16
16
16
16
6

12
12
12
16
16
16
12
12
12
20
20
8

12
16
16
8

16
12
16
16
12
16
20
20
20
20
20
16
16
16
16
16
16
16
16
16
16
16
16

(D&J)
p x 10=

960
991
865
257
236

11
958
988
709
898
979
997

2
108
758
998
38

501
914
19
52

365
7

29
108
439
675
997
873
618
292
81
92
40
14

897
686
468
257
110
36
8

995
999

2043
9049
1445
3936
2148
08189
2668
8877
6000
1620
1231
7784
2784172
405112
6807
2833
2986
25434
7925
5639
75531
70654
2462
033516
99226
7028
3769
0670
6353
9654
3736
9237
88281
76734
28306
85987
8378
5311
7122
9851

33885
937987
6620
4961

(H&P)
px 10'

958.2172
1045.322
872.8980
258.3941
234.0224
11.08189

958.2629
988.8369
709.5979
898.1085
978.5897
996.0434

.2783833
2.403328

107.7243
732.6466
981.1265
38.25434

501.8157
898.7277

19.82685
52.70654

365.2257
7.033444

30.03412
112.7367
439.5179
692.2308
967.9286
840.5547
573.4521
267.4685
76.40502
96.52873
42.02923
15.54811

925.2863
708.9009
486.4106
269.8771
117.0092
38.62267
9.528004

1096.646
1236.929

D & J —> Computation of P with DiDonato-Jarnagin procedure.
H & P —> Computation of P with Hammer-Peirce procedure.
0(G) —> Order of Gaussian multipliers used for D&J procedure.
All H & P results were computed with H&P multipliers of order 64.

m H&P (result) -D&J (result)
% error =- -—-

D&J (result)
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of o-y, h and k, ten values of P were determined and used in such a way that the

corresponding values of P ranged from roughly 10~4 to 1 — 10~6.

A table of 10,080 entries is given in Appendix C of [1]. This is an inverse table

giving P as a function of P, ax ( = 1), <ry , h, k. Six values of P are used, .05, .20,

.50, .70, .90, .95. The values of P were computed such that the specified probabili-

ties, P, were obtained to within three or four units in the fifth significant digit.
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