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A Remark Concerning the Solution of the
Dirichlet Problem by Finite Differences

By Bernard Epstein

In the classic paper [1] it is proven that the mesh-functions obtained by solving

a discrete analogue of the Dirichlet problem converge, as the mesh-width approaches

zero, to a harmonic function which solves the Dirichlet problem in a somewhat

generalized sense. More precisely, let the function / be continuously differentiable

in a bounded plane domain G and continuous in the closure G of G, and let the

Dirichlet integral

(1) />(/) = ¡fg[f2+fy2\dxdy

be finite. Then the finite-difference method presented in the aforementioned paper

is shown (under suitable assumptions concerning the smoothness of the boundary)

to furnish a function u harmonic in G whose Dirichlet integral D(u) is finite (and

not greater than /)(/)), and it is shown that u agrees with / on the boundary dG

in the sense that for all sufficiently small values of « the inequality

(2) ¡fs  (u-f)2dxdy^yt2

holds, where St denotes the portion of G consisting of those points whose distance

from dG is less than e and y denotes some positive number independent of e. The

authors indicate, without supplying the details, that u agrees with / on dG in the

more elementary sense that the function u — /, initially defined only in G, becomes

continuous in G if defined to vanish everywhere on dG. In this brief note we present

a proof of this fact, thus showing, without reference to any other method of treat-

ing the Dirichlet problem, that the finite-difference method provides an existence

proof for the "conventional" formulation of the Dirichlet problem as well as an

effective procedure for computing the solution.

The proof is accomplished by establishing two lemmas. The first of these is a

strengthened version of the inequality (2).

(3) Lemma 1. Um T2 / /   (w - f)2 dx dy = 0.

Proof. First we establish (3) in the particular case that G is the unit disc,

x2 + y2 < 1. Let v = u — f and let two points with polar coordinates (r, 0),

(R,  d), r < R < 1, be selected. Then

(4) v(R,e) -v(r,6) = [   vf{p,e)dp= [   vp(p,0)p1,2-p-mdp.

Applying the Schwarz inequality and assuming that r > §, we obtain

(5) [v(R, 6) - v(r,e)\2 g (j* v2p dp\(l* p~ldp} ^ 2(1 - r) | v2pdp.
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Integrating over 0 and setting e = 1 — r, we obtain

[    [v(R, 0) - v(r, O)]2 de ̂  2e ff v2 dx dy g 2e ff  [v2 + v2} dx dy
(6)       ■'o JJs, J-ls,

á 2íD(v).

Since D(f) and D(u) exist, D(v) also exists, so the left side of (6) must approach
-t,

zero with e. It then follows, by a familiar argument, that lim  /      v2(r, 0) dd
«-»o   Jo

exists. If this limit, which we denote by C, were positive, the inequality

f2'
v\r, 9)

Jo
de > \c

would hold for all sufficiently small e. Integrating this inequality, we would obtain,

in contradiction with (2),

(7) ff v2(r, 6) rdrde>\c f    rdr = \ Ce(2 - É).
JJs, ¿     Jj-í 4

Having thus established that C = 0, we return to (6), let R —> 1 (keeping r mo-

mentarily fixed), and thus obtain, by an obvious application of the triangle inequal-

ity,
,2r

(8) /     v2(r,e)de^ 2eDt(y)
Jo

where Dt(v) = II [v2 + vv2]dxdy. Integrating and noting that Dt(v) is a de-

creasing function ofr(= 1 — e),we obtain

(9) if  v2dxdy ̂  2tDf(v) Í    pdp = e2(2 - e)D.(v).
JJs, Jl-t

Since Dt(v) approaches zero with e, (9) implies (3).

For a more general domain with sufficiently smooth boundary it is readily

seen that the same argument may be applied by introducing a coordinate system

whose coordinate curves are the normals to the boundary and their orthogonal

trajectories.

Before stating the second lemma, we introduce the following terminology

(cf. [2, p. 481]). A ¿)-function (defined in a domain G) is one that is continuously

differentiable in G and has compact support, i.e., there exists € > 0 such that the

function vanishes throughout Se . A D-function, say v, is one which is continuously

differentiable in G and can be approximated by D-functions in the sense that there

exists a sequence [vn] of ¿-functions such that

(10) lim //   (v - vn)2 dxdy = 0, lim D(v - vn) = 0.

o

Lemma 2. y( = u — f) is a D-function.

Proof. As in the proof of the previous lemma, it suffices to confine attention

to the case that G is the unit disc. For each positive integer n we define the func-
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tions gn and hn as follows:

(11)     9n

0 < r < 1 -

cos nir (i-,-A i-ls,Si-'
\ . »/ n 2n

L An   =   1

r > 1 - £-
1_

2w

0»

Then the functions vn = fo„ are obviously ¿-functions, and we establish the two

parts of (10) by the following arguments.

(a)

dx dy —* 0;

(b)

//   (v — vn)2 dx dy =  II   (vhn)2 dx dy

=  ff     (vhn)2 dx dy ̂   ff     v2
JJSu„ JJSi,„

vn) = D(vhn) = DVn(vhn) g Di/n(vhn)

+    I      [vxh„ — vhn,x)2 + (vuhn — vhn.vf] dx dy
JJSu„

= 2 ff     [K\v2 + v2) + v2(h2n,x + hi,,)] dx dy.

D(v

Since h2 Ú 1 and hn ,x + hn ,y g n w , we obtain

D(v - Vn) è 2D1/n(v) + 2n2 //      v2dxdy.

Di/„(v) approaches zero with increasing n, and the same is true of the remaining

term, by Lemma 1. Thus the present lemma is proven.

The desired result concerning the boundary behavior of u now follows imme-

diately from the following theorem (which is a particular case of a theorem proven

in [2, p. 495-7]) : Let u be harmonic in a bounded domain G, let / be continuous in

G, let D(u) and D(f) be finite, and let u — f be a ¿-function. Then u — f ap-

proaches zero at the boundary if the latter satisfies certain mild conditions.

Petrovsky [3] has presented a proof that the boundary values are assumed. His

proof, which also appears in [4, p. 186 ff.], does not make use of (2) at all. How-

ever, the Petrovsky proof does not appear to extend readily to more general elliptic

equations, whereas the proof of (2) presented in [1] and the argument presented

here can be suitably modified so as to apply to other equations.
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