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1. Introduction. The definition of the correlation function and the spectrum of a

stationary random function is now classical, but in many applications one feels the

need to extend this definition to random functions, which, although non-stationary,

are in some sense nearly stationary. We suggest, therefore, for the definition of the

correlation of a random function whose covariance T(t, s) is known, the limit

(Li) *W-t^tIP *(*-?* + $)#>
if this limit exists for every h. The spectrum S(\) can then be obtained from R(h)

in the classical way.

We are led to the above definition of the correlation function R(h) by the follow-

ing considerations: we determine the sample-correlation from a truncated sample of

the random function; we then obtain a sub-correlation, RT(h), of the random func-

tion (defined as the correlation of the truncated random function) by averaging

the sample correlations; finally, the correlation R(h) is defined by (1.1) as the

limit of RT(h), if this limit exists.

The function R(h), so defined, has all the properties of a correlation function.

If the random function is stationary (wide sense) [4, p. 95-96], our definition coin-

cides with the classical definition. The estimation of the correlation of a stationary

random function has been considered extensively in the literature, particularly by

U. Grenander and M. Rosenblatt [6], R. B. Blackman and J. W. Tukey [1], and E.

Parzen [13,14]. In order to evaluate how good the estimate R(h) is from the sample-

correlations pT{h, oj), which are the only experimental observables, we compute the

variance of the random variables pr(h, w) about RT(h), and then we compute (for a

fixed h) an upper bound of R(h) — RT(h) for large T.

This paper is especially concerned with the case in which the random function

has a periodic covariance r(i + r, s + r) = T(t, s). To appreciate the scope of

the above condition, let us note that it is always satisfied when the random function

is a sum of two uncorrelated random functions, one being a stationary (wide sense)

random function and the other a periodic random function.

The last part of the paper is devoted to the estimate of R(h) for a non-stationary

random step-function V(t, to), similar to the one introduced by N. Wiener,

(1.2) V(t, to) = Xn(u),   n - 1 g t < n, n = 1, 2, • • • ,

where [Xi(to), ••• Xn(u), ••■] is a sequence of independent random variables

taking only the values —1 and +1 with equal probability.

An experimental function will be constructed using a table of random numbers,

and sample-correlations will be determined. Estimates for the sub-correlations are
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then determined by taking averages over the experimental correlations. The accu-

racy of these estimates is characterized by giving the variance for the departure of

the sample-correlations from the estimated sub-correlations. The experimental data

are then compared with the theoretical results. (Cf. [5], [9].)

2. Random Functions, Covariances and Correlation Functions. We consider here

a random function of a real variable t as an ensemble of real functions f(t, to), where

to is a parameter chosen at random in some set Í2 according to a probability measure

ß [7]. A sample of the random function f(t, to) is simply the real function/(i, co0)

corresponding to a particular choice of too in the set 0. It is convenient for many

applications to take for £2 a function space; each point to is then a function co(i)

belonging to some prescribed class of functions (e.g., a continuous function on

[0, 1]). One has thus for each sample f(t, to) = ci(t). When this particular choice is

made for Û, one says that the random function is of "function space type" [4, p. 67].

The following general hypotheses shall be made with regard to the random

functions considered in the present paper:

Ht .f(t, o}) is measurable with respect to the product measure m X m (where m

is the Lebesgue measure on the real line — °° <£<+<»).

H2. For each t, f(t, u>) € L2(0) : f(t, u)* < + *. (If F(w) Ç L(fi) we denote its

mean value by / F(u>)dp = F(co).)
Ja _

H3. H2 implies/(i, w) £ L(Q) ; we suppose f(t, <a) = 0.

H4. It follows from H2 that the covariance

(2.1) T(i, S)   = /(/, a,)f(s, to)

exists for all t's and s's. We assume that,

(2.2) T(t, t) € L[a, b]

for every finite interval a í Í S &. From (2.2), by the Fubini-Tonelli theorem,

[8, Vol. 1, p. 609] it follows that

(2.3) f{t, to) € L2[a, b)

for almost all samples, in any finite interval a î£ t ^ b. This implies also that

(2.4) f(t, a) 6 L[a, b] for almost all samples.

In our earlier paper [9] instead of (2.2), we assumed that

(2.2') F(t, s) € L(A2)

for every finite rectangle A2 in the plane (t, s). We are indebted to the referee for a

simple counter example showing that (2.2') does not always imply (2.3) and for

the suggestion that we replace (2.2') by (2.2) ; the proof that (2.2) implies (2.3) by

the Fubini-Tonelli theorem is straightforward.

If the random function f(t, w) is stationary

(2.5) rit, s) = p(t - s)

where p(h) is called a correlation function. Due to Ht, p(h) is uniformly continuous

in any finite interval [3]. A real function p(h) is a correlation function if, and only
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if, it is symmetric and positive-definite

(2.6) p(-h) = p(h)

(2.7) EIX^Äy-WeO
i       k

for any set [hi, • • ■ hn] with n arbitrary.

3. Truncated Samples of Random Functions. In experiments concerning a ran-

dom function f(t, to) one can materialize, as a rule, the sample of the function only for

a finite interval, that is, one knows only truncated samples. As far as finite intervals

are considered, one often uses the notation [— T, +T] for the interval in which the

samples are known in the experiment. Rather than this two-sided (symmetric with

respect to t = 0) truncation, we shall prefer here a one-sided truncation (starting at

t = 0) and we will define a truncated sample by

fT(t, coo) = f(t, coo), 0 ¿ í á Ï",

(3.1)
fr(t, co0) = 0, t < 0 or t > T.

This definition implies that the experiment starts at t = 0; we assume that it could

be extended for an arbitrary time T in the future, but not in the past (time prior

to the beginning of the experiment). From the samples we will draw some inference

with regard to the random function for 0 ^ t < + °°, but completely ignore it for

t < 0.

4. Correlation and Spectrum of a Truncated Sample. For a truncated sample,

corresponding to a given co0, we define a sample correlation as

(4.1) PT(h, co„)  = l- ^      f (k - \ , coo) / (é + \ , <oo) dS,        for    | Ä | á T,

and

(4.2) PT(h, too) =0, for | h | ^ T.

Let us remark that both (4.1) and (4.2) can be replaced by the formula

pT(h, coo) = j, j_      St U - 2 > "«J /r U + g ' ^ ) d%

= f j.    ^' w^fT^ + I H wo) dí,       for all   h.

From H2 it follows that the correlation pT(h, co) exists for almost all samples

(i.e., with probability one). The great advantage of our definition is that the

correlation pT(h, co) is a positive-definite Sanction oS h, uniSormly continuous in h (Sor

each co Sor which it exists).

If we had used as correlation of the truncated sample, as is very often done, the

function

- (h    \       PtOí, co)(4.4) Pr(Ä'w)=—TM

T
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then we would have completely missed these important properties of pT(h, co).

Indeed, pT(h, co) would have been, in general, discontinuous at | h | = T and no

longer a positive-definite function. Thus pT(h, co) would not have been the Fourier

transform of a function ^r(X, to).

The only advantage gained by using pT(h, co) is that if / is constant, pT is also a

constant while pT is not. This fact was probably the reason which led the statisti-

cians to use this definition for the correlation of a truncated function. However, the

nonexistence of a spectrum ^t(a, co) which may have to be reintroduced later by

various artifices, may lead to serious complications in the estimation of the correla-

tion functions, particularly when numerical methods are used for that purpose.

The spectrum ^(X, co) is very simply connected to the complex Fourier trans-

form of the sample

(4.5) aT(\, co) = ^ f   e~MS(t, co) dt = ^ ¡^   é~MSÁt, to) dt.

Due to (2.3), the Fourier transform exists for almost all samples and, by Plancherel's

theorem, [8, Vol. 2, p. 742], ar(X, co) Ç. L?[— °o, +w] (but not, in gen-

eral, to L[— », + <»]). From (4.5) we have:

(4.6) | aT{\, co) |2 = 1 /£" em'-%(t, co) fr(,, co) dt ds.

Let us consider the (t, s) plane and make the change of variables

(4.7)

y h y    i    h

5-^44,    Ä = s-i.

For any F(t, s) € L{R2)

íCF(t's) dt ds=/jC f G - ^ ' *+0di dh

the last formula being a consequence of Fubini's theorem [8, Vol. 1, p. 631].

Using this transformation, we can write (4.6) in the new form

(4.10) | ar(X, to) |2 = ~ ¡^   eiXhPT(h, co) dh.

Using the fact that pT(—h, co) = pT(h, co) we have

2  rT
(4.11) | aT(\ co) |2 = = /   pT(h, oi) cos Xh dh.

1  Jo

Thus we obtain immediately

2 rT T
(4.12) <Ar(X, to) = - /   pT(h, co) cos \h db = — | aT(\, co) |2

x Jo T
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which gives the expression of the spectrum in terms of the Fourier transform of the

truncated sample.

Let us note the following properties of this function

(4.13) *r(A, co) ^ 0,

(4.14) M-\ «) = *r(X,«>,

(4.15) WX, co) e 1(0, H-»).

Due to this last property we can invert the Fourier transform (4.12) and we obtain

the reciprocal formula

/■+»
(4.16) pT(h,u) =   /      «Ar(X, co) cos XhdX.

Ja

5. Sub-Correlation and Sub-Spectrum of a Random Function. Let us now define

the sub-correlation RT{h) of the random function Sr{t, co) as the average of the

sample-correlations pT(h, co), i.e.,

(5.1) RT{h) = PT{h,w).

Obviously, we have

(5.2) RT(h) =0, \h\> T.

and for all other values of h

(5.3) RT(h) = I [| /™2 / ({ - * , .) S (« + |, .) *] *,,        t* |- ¿ft

Inverting the double integral in accordance with Fubini's theorem we find

1     rT-\h\li       / h h\

(5.4) »rW-ij r^- = ,£ + ^d£, O^HT.

Let us refer to the change of variables (4.7) and let us consider the (i, s) plane

(Figure 1). We introduce the following notation

(5.5) At = {(t,s):0 ¿t^ T,      Oús^T}.

Then obviously

(5.6) RT(h) = = X Integral of T(t, s) along the segment AB of 5(A) contained

in AT .

If we define

rr(«,«) = r(<,s), (t,s) € AT

(5.7)
rr(«, s) = 0, (Í, S) $ AT

we can also write (5.4) in the following way

(5.8) RT(h) = I £°° rr (s - |, è + 0 dS,

which is true for all values of h, giving RT(h) = 0 for h < T or h > T. Obviously,
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Ï*

¿(h),h>0

y
-V-_/
/        /i/ y  '

/
/       i

/

OS = s
i¿(h),h<0 OM=t
I      v /       0P = h/V2

I   /
OQ=v£i

OA = h

•       I
/■ I

-ty-^¿-

M N    A

one has also

(5.9)

Fig. 1.—Change of variables.

RT(h) =\lx  rr(£,£ + |A|)d£

l   rrHA|
= ^|      r(£,€ + |Ä|)d£.

Thus, io compute RT(h) Sor all h it is sufficient to know the covariance T(t, s) in the

square AT.

Let us define the sub-spectrum oS the random function f(t, co) as the average over

the spectra of the truncated random function

(5.10) *r(X) = fT(K co).

Then we have the two reciprocal formulas

(5.11)

(5.12)

RT(h) =  I     <pT(\) cos Xh dX
Jo

2 rT
<Pt(X) = - /   RT{h) cos Xh dh.

IT Jo

From (4.13) it follows that <pT(X) ̂ 0; thus, by S. Bochner's theorem [2] RT(h) is a

continuous correlation function.

6. Correlation Function of a Random Function. We define the correlation function

R(h) of the random function/(i, co) by

(6.1) R(h) =  lim RT(h)
t-*+x

lim I / r(s-^£ + |)df,
r-H-» 1  •'1*1/2 \ ¿ ¿/

if this limit exists for every real h.

If the random function is stationary (wide sense), then by definition

(6.2) Tit, s) = p(s-t),     r ($ -1, í + 0 = »(A),
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and

ffr(A) = (l - ^) p(A), 1*1 ÍT,

Är(Ä)   =0, I *1"è   ft

Thus the limit of RT(h) exists and

0-w)(6.4) Ä(Ä) =lim 11 -1^1 Jp(A) = p(A).
T-.-00   \ i     /

Hence, for a stationary random function our definition gives the classical result,

but we can also apply (6.1) to non-stationary random functions.

Let us consider as an example the random function

fit, co)  = -^

where W(t) is the classical Wiener-Lévy function, giving the abscissa at time t of a

particle, starting from the origin at time t = 0, and subjected to one-dimensional

Brownian motion. This function is certainly not stationary; it has the covariance

T(t,s) = a/1-, 0 <t^ s.

r«,s) =  J*-, 0 <s ^ t.

According to our definition this nonstationary random function has the correlation

R(h) m Ian, I [        J   J,    , d* = 1, for all   h.

7. Spectrum of a Non-Stationary Random Function. As far as the spectrum is

concerned, «?r(X) does not, in general, tend toward a limit when T —» + <», even if

the correlation R(h) exists, but exactly as in the stationary case [10, Vol. 2, p.

164-166] it can be shown, using Paul Levy's continuity theorem [12, p. 195], that

the integrated spectrum

(7.1) ST(X) =  Í <pAv) dv
Jo

does in fact tend toward a limit

(7.2) -S(X) =   lim Sr(X)
r-H-oo

if the correlation R(h) defined by (6.1) exists and is continuous. (This is not

necessarily true; R(h) being the limit of a sequence of continuous functions can be

discontinuous.) Thus,

(7.3) ß(A) =  /      cos XhdS(X),
Jo

this being a Fourier-Stieltjes integral and the spectrum S(X) being a monotonie
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non-decreasing function such that <S(0) = 0, S(+ » ) < + °°. In general, S(X) is

discontinuous and the spectrum has a countable number of lines corresponding to

a finite amount of energy.

The spectrum >S(X) can be computed from the correlation R(h) by applying

the Paul Levy inversion formula [12, p. 166]

(7.4) Six,) - S(Xx) = lim - r1sinX2A-sinX1AfiW d&>
A-H-oo T Jo h

which is valid if Xi and X2 are continuity points of /S(X). When Rih) is known the

spectrum is thus defined for every X > 0 with the exception of, at most, a countable

number of discontinuity points.

8. Estimation of Correlations for a Non-Stationary Function. For a non-stationary

random function, even if we have not only truncated samples of the function, but

also its covariance in AT , this does not give us sufficient information to determine

Rih). It is obvious, from (6.1), that large values of £ are most important in deter-

mining Rih) (even at small values of A). The knowledge of Tit, s) in the square

AT only does not give us any information about its values for large £ on ¿(A) (See

Fig. 1).
We shall consider here one class of random functions which is not stationary,

but on which information is given, which enables us to make an estimate of Rih).

This class is defined by the condition that rf|—-,£ + -Hs periodic in £. This

condition means that the covariance is invariant under a translation t parallel to

the first bissectrix (Fig. 1)

(8.1) r(< + t,s + r) = ra«).

The scope of the implications of this hypothesis for applications is better under-

stood if one points out that (8.1) is satisfied when the phenomenon represented by

the function fit, co) is the result of the superposition of two phenomena, one sta-

tionary and the other periodic. Thus

(8.2) f{t, co) = fi(t, co) + Mt, co)

where/i(i, co) is a stationary (wide sense) random function:

(8.3) hit, «)/i(«, co) = ».it - s)

and/2(i, co) is periodic

(8.4) Mt + r, to) = Mt, co)

Ma, co)/2(i, co) = r2(i, s)

(8.5)
r2(< + t, s) = r,(í, s + t) = r2(í, s),

the two random functions Si and /2 being uncorrelated

(8.6) /i(i, »)/i(«, co) = 0.
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Thus one has

(8.7) Tit, s) = Pl(i - s) + r,(i, s)

and r(£, s) satisfies (8.1).
In this case the limit (6.1) obviously exists and the correlation is given by

(8.8) Rih) =i f r(£,£+ | A |) a?.
r Jo

The sub-correlation for T = A*V(where N is an integer), due to (5.9), is equal to

(8.9) ß„r(A)=^-/"      r({,$+|A|)df.

As a consequence of the periodicity

Rih) - RM = -±- j    r($,i + \h\)dt.

We thus have the upper bound

(8.10) I Rih) - RM | =s J- j    |r(f,i+|Ä|)|df

for the error obtained by using the sub-correlation ßyT(A) instead of the correlation

Rih). The upper bound (8.10) is a function of A; however, at a given A, this bound

tends to 0 as Í/N.
Let us consider the case when (i-l)rS | A | ^ kr ik integer). Using the pe-

riodicity of r and Schwarz inequality we have

(8.11) ! Rih) - RM | g• £l- f Tit, i) df.
iV   T Jo

When the covariance T(i, s) is known for one period over the diagonal t = s we can

compute

(8.12) A = - f r(f, ?) df.
T  Jo

Finally, the upper bound for the approximation is given by

(8.13) f 'ä(ä) - R„rih) | á A A, (l--l)ráHk

Let us now consider RT(h) when iW < T < (V + l)r. We have

,.r-|A|

ßT(A) - ^ R„ih) = i Í       r(f,f+|A|)df

-i'/"rífeí^-|.fc|)dfe
i  Jjvt

Thus, due to the periodicity of T,

(8.14) Är(A) - ^ «**(*)    á A 1 < 4 •V
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From (8.13) and (8.14) we obtain finally

ú A L±* , Nt < T < (N + l)r,

(fc - 1)t g A < kr-

This relation shows that the approximation is good if k/N is small.

9. Accuracy of Estimates of Correlations. In estimating the correlation ß(A) of

a random function from truncated samples there are two steps :

(a) From the correlations pT(h, coy) of the truncated samples we estimate the

sub-correlation ßr(A),

(b) From ßT(A) we compute Rih).

In the preceding section for the case of a random function with a periodic covari-

ance we have solved problem (b) at large values of ft Now, let us look at the prob-

lem (a), namely, how to evaluate the approximation with which one determines

ßr(A) from the average of the correlations pT(A, coy) of a number q of samples

(9.1) ßr.,(A) = -2Pr(A,coy).
q y-i

It appears that the best way to make such an evaluation is to determine the vari-

ance of the random variables pr(A, coy) about their mean value ßr(A) ; if this vari-

ance is small enough we can expect that for a reasonably large number q of samples

the estimate RTih) will be fairly good.

In order to compute this variance, in addition to Hypotheses H! to H4 of Section

2, we shall assume that

H6.Sit, co) € L4(0) foralK's.

This insures the existence of the fourth-order moment

(9.2) 9R(fc ,t2,t3,U)    =    f Sik , Co)/«, , C0)/(i3 , «)/(Í4 , to)   dp.
Jn

for all [ti, t-2, U , U],

We shall, moreover, assume that

He. 9TC(ii , fe , <3, k) € Li A) for every finite parallelepiped of the four-dimen-

sional space ih , t>, t-3, U).

Let us observe that the fourth-order moment exists in the important case of

normal random functions, i.e., when the n random variables, Sik , co), • • • /(i„ , co)

[ii, • • • , t„] arbitrary follow an n-variate normal (Gaussian) law.

From (4.3) and (5.8) we find that the departure of a correlation for a particular

truncated sample from the mean value taken over the correlations for all samples is

given by

pTih, to)  - Rrih)   = \ £" \tt (f - \ , i + I)

.'V7

(815)
Rrih) --£Rih)



CORRELATIONS  AND   SPECTRA   FOR  NON-STATIONARY  RANDOM  FUNCTIONS 11

After taking a square and averaging, we obtain

(9.3) crT(A)2 = [pr(A,co) - RTih)P = 1 /£   F>(£, v, A) df dr,

with

(9.4) \       2 2 2 2/

In the above equation rr(i, s) is defined by (5.7) and 3H7. by the two relations

3llr(ii, k , k , U) = SnZ(Í! ,U,U,U)
(9.5)

when    (ii, is) € AT   and(<3,4) € AT

and

(9.6) Writi, k , h , U) = 0   when    (<i,fe) $ Ar   or    (¿3,0 Í Ar.

Equation (9.4) shows that whenever the covariance T and the fourth-order moment

SHI are known, we can evaluate the variance, o>(A)2, of the random variables

Pj.(A, co) about their mean value ßr(A). In particular, for A = 0, we have

(9.7) <rr(o)2 =1 ff^  [3it(i, e, i>, fl,) - r(f, {)r(„, ,)] df di,.

10. Random Step- Function with Periodic Covariance. As an example let us take

the random function defined as follows*

(10.1) Vit, co) = Z„(co) n - 1 g t < n, n = 1, 2, •••

where

(10.2) Zi(co), ••• ,Zn(co), •••

is a sequence of independent random variables, taking only the values —1 and +1

with equal probability

(10.3) Prob [Xn = -1] = Prob [Xn = +1] = §.

The random function Vit, co) is essentially the same as a function considered by

Norbert Wiener in his pioneering work on correlation and spectrum, [15, p. 151]

except for the fact that his function is defined for — co < í < + 00 and ours only

in[0, +00].

From (10.3) it follows that

(10.4) Xn = 0

(10.5) XmXn = 5m,„ ,

* As measure space il, one can take the interval [0, 1], 0 g to < 1, with X„(w) = 2a„ — 1,

where a„ is the nth coefficient in the binary development co = a,/2 + • • • + a„/2n + ■ ■ ■ . The

measure¡i on [0,1] is the Lebesguemeasure\i(to: o» = 1} = u{a: o„ = Oj = J.
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where ¿>m,„ is the Kronecker symbol. If one defines

A™,» = {it, s):m — 1 ¿ t < m, n — 1 ^ s < n]

then

r(i, s) - 1,        (Í, s) €    U   A„,„ ,
n<=1

n=H-°o

r(í, S) m o,        (Í, s) í    U   A..» .

(10.6)

Obviously, the random function V(í, co) is not stationary, but its covariance, when

put in the form r ( £ — -, £ + - J is periodic, with period 1 in £ (see Fig. 2). Thus

the results of Section 8 apply, and the non-stationary random function Vit, co) has,

according to (8.8), a correlation

Rih) = (1-1*1), \h\aX,

Rih) =0, | A | ^ 1.

Let us first consider the case T = N, where N is an integer. We find that

pAh, co) = ik - | A \)YNik - 1, co) + (1 - k + | h \)YKik, co),

(10.7) * - 1 j& | * i.át fa       1 á * fè N - 1,

P»(A, to) = 0, I A I ^ V,

where Fjv(0, w), Fw(l, co) ■ • • F>r(V — 1, co) represent the random variables

(10.8) Ym CO)  •- L S    Xy(co)Xy+i(co),     A-  =  0, 1,   ■ ■ •  iN  -   1)
iv     y=i

Fig. 2.—The (í, s) diagram for a random step-function. r(| — -|, £ + 4) is periodic in {

and for a translation parallel to Í = s, T(t + 1, s + 1) = Tit, s).
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in particular

(10.9) r,(o, co) = i.

For each sample co, the sample-correlation pat(A, co) is represented by a polygonal

line (Fig. 3). The ordinates Y Ah co), F*(2, w) ■•• Y„iN - 1, co) corresponding

to A = 1, 2, • • • (iV — 1), are the random variables defined by (10.8). We see

immediately that YNik, co) can only take the values

N -k N - k -2

N    ' N

following the binomial law. As a consequence

+
N - k

N
+

N - k
N

(10.10) |p*(*,«)| ^ l-£,        k = 1,2, ... ,(JV- 1).

We obtain for the mean, variances, and covariances of the ordinates YKik, co)

respectively,

(10.11)

(10.12) YAK co)2 =

F„(fc,co) =0 k = 1,2, ••• ,(AT- 1)

N - k

N2

Fig. 3.—The polygonal line pN{h, <o) represents a sample-correlation of the step-function.

Rif(h) = pif(h, co) is the sub-correlation, which for the step-function, is equal to the correla-

tion  function   R(h).
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and

(10.13) YAk, u)Yj,il, <■>) =0, k^l.

From (10.7), (10.9) and (10.11) we deduce

pw(A, co) = 1 — | A |, |A|^1
(10.14) _

pAK co) = 0, I A I ̂  1.
Thus

(10.15) RAh) = pAK co) = ß(A).

Let us next suppose N g T < N + 1. We find

prih, co) = — piv(A, co) +-=-Xk XN+i -\-Xk+i XN,
(10.16) J J 1

N-k<h<T-k,       k = 1, 2, • • • N.

pT(h, co) = -pf, pAh, co) 4-j=— Xk XN+i,
(10.17) T T

T-k<h<N + l-k,       fc = 1, 2, •■■ N.

Thus if N < T < N + Í,

(10.18) |pT(A, co) - PAh, co)| g (l - ^ \PAh, co)| + (l - ^ .

As a consequence of (10.10), we have

(10.19) \PAh,a,) -pAh,u)\ú x^j    for   N Ú T < N + 1.

For large values of N the right-hand side of this inequality is as small as we want.

Thus we can always, in studying pr(A, co), suppose that T has an integer value N.

Let us now compute the variance a Ah)2 of the sample-correlations about their

mean value. We will make the computation only for T = N. Due to ( 10.14) one has

o(A)2 = pAh, co)2.

From (10.7), (10.12) and (10.13) we obtain

p^Ä7^ = (fc-|A|)2^A+i

(10.20)

+ (1 - k + | A |)2 ̂ ^ ,    fc - 1 g | A | g fc, k = 1,2, • • • N - 1.

In particular for h = k

(JV - *)
(10.21) **(*> = pw(fc,co)2 = v;

The proposition that the random variables pAK co) tend toward their limit Rih)

Sor almost all samples,

Prob [lim Pa,(A, to) = ß(A)] = 1,
JV-M-oo
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will now be established. First from (10.8) we compute

(10.21) YÄkM* = ^-k)(2N-2k+l)

Let us now observe that for a fixed N, when k takes the values 1,2, • • • (JV — 1)

one has YAk, co)4 < -r™ . Thus, k now being fixed, we have

If—+00

and, therefore

=-roo iv=-t-oo    i

E  YAk,<*Y £ 3  E ~ < + oo
iV-1 AT-1     A'"'

E   YAk, co)4 < +  oo    =

Here, we use the following criterion for the almost sure absolute convergence for a

series of random variables. If Eí°° I Xn \ < + oo, then Prob [Eí°° I Xn | < + oo]

= 1. This criterion applies even when the random variables Xi, • • • , X2, • • • are

not independent. However, the convergence of the series implies that YAk, co) —> 0.

We have thus proved that

Prob [ lim  YAk, co) = 0] = 1

for each fixed k ^ 1.
Let us now take a fixed interval | A | ¿I, where M is an integer. In this interval,

there are exactly M points, A=1,A = 2,---A = .M, which completely determine

the polygonal line. Each of the M ordinates YAh co), Fir(2, co) • • • YAM, co)

tends toward 0 with probability one. Their number being finite, this evidently

implies

Prob f lim  YAk, co) = 0   for   * = 1, 2, • • • M\ = l.
JV-H-oo

We have thus proved that

(10.22) Prob [ lim p*(A, co) = ß(A)] = 1
ÍT-H-oo

in the finite interval | A | g M and the proof is complete because M could be taken

arbitrarily large.

11. Correlation Estimates for a Continuous Step-Function Constructed Using

Sequences of Random Numbers. A continuous step-function has been constructed

using a table of random numbers which are listed in 100 groups of 1000 digits each

[11]. For our analysis we selected the 200 first digits of each of the 100 groups and

divided them into five consecutive segments of 40 digits. All the even digits were

then replaced by +1 and the odd digits by —1. We thus obtain one set of 500

sequences of 40 digits (+1, or —1). Other sets were constituted by combining two

or more consecutive segments of 40 digits. As a result we have obtained the follow-

ing five sets of experimental functions without overlapping sequences within each

set: 500 sequences of 40 digits; 200 sequences of 80 digits; 100 sequences of 120,

160 and 200 digits, respectively.
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Let us consider a set of q sequences with N digits in each sequence. A sample-

correlation for the sequence is determined for T = N by (10.8). The average taken

over the q sample-correlations of the set determines the estimate for the sub-

correlation, cf. equation (9.1).

(11.1)
1   q

Rif,q(k) = - E pAk, «<)•
q »¡-i

In a sequence of N digits there are N — k products Xy(co)Zy+A(co) equal to

either +1 or — 1. If nAk, co) is the number of products equal to +1 then

(11.2)

and

(11.3)

pAk, oi) = -[N k — 2nAr(fc, co)]

6    ...      N-k       2   A      f.      .
RN,o(k) = —=— -1rr 1^ nAk, Ui).

K J\q u,=i

As it has been shown in Section 10 a sample-correlation pAh, co) is represented

by a polygonal line. The vertices of this polygonal line correspond to A = k =

0, 1, 2, - • • , iN — 1) and are given by (11.2). Similarly, the estimate RN¡tik),

for the sub-correlation is represented by a polygonal line which is determined by

(11.3). It is, therefore, sufficient to determine the values of pAk, co) and RNttik)

at the vertices of the polygonal lines to have the corresponding sample-correlations

Psih, co) and the estimate for the sub-correlation RN.qih) for the continuous step-

function. Figure 4 illustrates several examples of sample-correlation pat(A, co) for

individual sequences of digits. Numerical data for ßjy,,(&), for the five sets of

sequences, are listed in Table I and a few of them are illustrated on Figure 4. The

0.2

0.1 h

R,p

-0.1 h

-0.2

N,q
Ik)

N =40
q =500

.s>* — *r
V

W
W

\ /

Fig. 4.—Experimental examples of sample-correlations pif(k, to) obtained for a random

sequence of digits —1, +1, are represented using light interrupted lines. The heavy polygonal

line represents the estimate of the sub-correlation R¡f.q(k) obtained by averaging over q = 500

sample-correlations.
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theoretical sub-correlation RAh) is in the present case equal to the correlation

ß(A) (see (10.15)) and, therefore, the experimental results for RN.qik) should be

compared to the theoretical value

(11.4) RAk) = Rik) = 0, k ^ 1.

The departure of the value for a sample-correlation from the estimated sub-

correlation, as determined from q samples, is given by

pAk, co) — RN¡tik).

The variance e^^ik)2 for such departures is given by the relation

cN.qik)2 = -E [pAk, co) - R^ik)]2

(11.5) Q  '  f
= jp- E    —nAk, co) + -E nAk, co)    .

Numerical results for the experimental variance o>,g(fc)2 are listed in Table II and

compared with the theoretical values, o>(&)2, computed by using the relation

(10.21).

Table I

Estimates Sor the Sub-Correlations oS Sequences of Random Numbers

N.
q..

40
500

80
200

120
100

160
100

200
100

ÄNt9(l)

ßij,s(2)
ßN,«(3)

ßN,9(4)

-0.0041

+0.0053
+0.0066
+0.0083

-0.0026

+0.0040
+0.0071
+0.0036

-0.0047

+0.0143
+0.0087
+0.0095

-0.0023

+0.0033
+0.0081
+0.0061

-0.0053

+0.0054
+0.0073
+0.0072

Table II

Comparison between Experimental Variances <ry¡,qik) and Theoretical
Variances uAk)

N
2-

<tn,s(D2
<rN(D2

40
500

0.0253
0.0244

80
200

0.0125
0.0123

120
100

0.0094
0.0083

160
100

0.0074
0.0062

200
100

0.0066
0.0050

<TK.,(2)2

<rN(2)2

0.0231
0.0238

0.0125
0.0122

0.0076
0.0082

0.0061
0.0062

0.0048
0.0050

c.v.9(3)2

°n(3)2

0.0232
0.0231

0.0121
0.0120

0.0074
0.0081

0.0059
0.0061

0.0043
0.0049

<rx.,(4)2
«*(4)2

0.0198        0.0089        0.0065        0.0038
0.0225        0.0119        0.0081        0.0061

0.0035
0.0049
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15. Frequency Distributions of Sample Correlations. Let us denote as

q5q[nAk, co) = u]

the number of sequences of a set for which nAk, co) is equal to u. We find then, for

the frequency distribution of sample-correlations

(12.1)

where

5q[pAk, co) = U] = $q[nAk, co) = u],

U = ±iN -k-2u).

Numerical values for the frequency distribution of sample-correlations can easily

be obtained from Table III where qHfq[nAk, co) = u] is listed for the five sets of

sequences. It may be noted here that (11.3) can also be written as

(12.2) Rif.t(k) =     Ar     - tï E W5q[nAk, co) = u],
IS J\ K=o

which is often more convenient for numerical computations.

Table III

Frequency Distributions of Sample-Correlations'Sq(pN = U) = Sq{nn = u)

na

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

500 JsOO («40 = u)

*=lt=2i=3t=4

0
0
4
3
8

14
23
30
49
50
58
56
68
51
38
22
11
7
2
6

0
0
3
3

16
13
33
45
53
51
66
70
57
29
32
9

12
4
3
1

0
0
2
2

10
18
27
26
46
55
69
68
59
46
28
20
13
8
0
3

1
1
3

12
19
23
49
44
61
74
72
65
38
18
6
8
5
0
1
0

MSO

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

200 Ja» (raso = w)

k = 1 \k = 2\k = 3 \k = 4

0
0
0
0
0
2
0
4
4
9
5

13
18
11
16
16
18
14
19
16
6
8
6
8
3
2
1
0
0
0
1

0
0
0
1
1
1
3
3
8
7

12
14
15
13
15
20
10
11
21
12
11
12
4
3
2
0
0
1
0
0
0

1
0
0
1
2
1
3
2
7

12
14
12
13
15
19
20
20
15
12
8
5
7
6
3
1
0
0
1
0
0
0

0
1
0
0
0
0
1
3
8

11
13
19
18
18
18
29
23
6

14
5
5
0
4
1
1
0
2
0
0
0
0

ill»

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

100 «Fioo («120 = u)

fc = l|fc = 2|fc = 3|jfc = 4

0
1
0
1
2
2
1
3
6
2
7
5
6
7
5
7
6
5
4
9
6
6
1
0
3
2
0
2
0
0
0
0
1

1
0
1
2
2
0
3
4
5
3
7

13
7
7
7
6
8
7
1
4
2
3
3
2
1
0
0
0
0
1
0
0
0

0
2
2
1
1
3
0
3
4
4

10
8
9
9
9
8
2
5
6
4
3
5
0
0
0
0
0
1
0
1
0
0
0

0
2
0
1
0
1
2
7
7
7
9
8

11
10
9
4
4
3
4
4
2
0
0
0
2
2
1
0
0
0
0
0
0
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TABLE III {Continued)

«160

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

100 iioofaieo = u)

k = \ k=2

0
0
0
0
0
0
2
4
1
1
3
4
4
1
3
7
4
6
4
7

12
7
5
4
3
4
2
3
4
1
0
2
1
0
0
1
0
0
0

0
0
0
0
0
0
2
0
1
2
3
1
3
8
4
8

14
9
7
8
6
3
6
4
3
2
2
0
1
0
1
2
0
0
0
0
0
0
0

M200

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

100 JlO0(«200 =w)

k = l 2]ifc = 3

1
1
1
0
1
2
3
1
2
3
1
1
4
9
4
3

10
8
5
8
3
5
7
2
2
3
1
5
1
1
1
1
0
0
0
0
0
0
0

¿fc = 4

0
0
1
1
2
1
0
0
4
3
5
4
6
3
8
5

12
8
4
2
4
5
6
7
3
0
0
1
4
0
0
0
1
0
0
0
0
0
0

The theoretical probability distribution of sample-correlations is given by the

relation

(12.3)

where

ProbU(fc,co) = U) = ¿(^ *).    u = 0,l,---iN-k)

u =
N -k     NU

2   *

For large values of (JV — fc), this binomial distribution can be approximated by

the Gaussian distribution

Prob[p.v(A;,co) = ¡7]

(12.4)

exp

V2t(JV - A:)

jN - k - 2u)2~

2iN -k)     J '
U = 0, 1, • • • N r~ k.
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RJ

&

k = 2
N = 40
q=500

U

Û1

-0.6 -0.4 -0.2 0.2 0.4      0.6

Fig. 5.—Experimental frequency distributions of sample-correlations, Sq\pn{k, to) =  U]

(full line)are compared with the theoretical binomial frequency distribution (dashed lines).

In particular, the probability of pAk, co) being equal to the sub-correlation

RAk) = PAk, co) =0, k è 1

(which, in the present case, is also equal to the correlation ß(fc) ) is given by

(12.5) Prob [„„(*,«) -¿J-JL'/   7

with the approximated formula

2

Ktf-fc),
fc à 1

(12.6) Prob [pAK co) = 0] k à 1.
V2f(]V - *) '

In Figure 5 we are comparing some of the experimental frequency distributions

with these theoretical results.
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