Concerning the Numbers $2^{2 p}+1, p$ Prime

By John Brillhart

1. Introduction. In a recent investigation [7] the problem of factoring numbers of the form $2^{2 p}+1, p$ a prime, was encountered. Since $2^{2 p}+1=\left(2^{p}-2^{t^{(p+1)}}+1\right)$ $\left(2^{p}+2^{\frac{1}{(p+1)}}+1\right)$ for odd p, the problem consists of factoring the two trinomials on the right. In this paper the results of a search for factors of these trinomials are given, as well as a determination of the nature of certain of these numbers for which no factor was found.
2. Elementary factors. Let $N_{p}=\left(2^{p}-2^{\frac{1}{2}(p+1)}+1\right)\left(2^{p}+2^{\frac{1}{2}(p+1)}+1\right)=A_{p}$ - B_{p}, p an odd prime.
A. From the fact that $5 \mid N_{p}$, it easily follows that $5 \mid A_{p}$ iff $p \equiv \pm 1(\bmod 8)$ and $5 \mid B_{p}$ iff $p \equiv \pm 3(\bmod 8)$. On the other hand, $5^{2} \nmid N_{p}$ unless $p=5$; for, since 2 is a primitive root of 25,2 belongs to the exponent $\phi(25)=20$. But $2^{2 p} \equiv-1$ $(\bmod 25)$, or $2^{4 p} \equiv 1 \quad(\bmod 25)$. Therefore, $20 \mid 4 p$, or $p=5$. Thus, if $p=5$, $5^{2} \mid 2^{10}+1=1025$, while if $p \neq 5,5^{2} \nmid N_{p}$.
B. If q is a prime $\neq 5$ and $q \mid N_{p}$, then $2^{4 p} \equiv 1 \quad(\bmod q)$. But then 2 belongs to the exponent $4 p(\bmod q)$. Thus by Fermat's Theorem, $4 p \mid q-1$; that is, every prime divisor $\neq 5$ of A_{p} or B_{p} is $\equiv 1 \quad(\bmod 4 p)$.
C. Suppose p is odd and $q=4 p+1$ is a prime. Then $2^{q-1}=2^{4 p} \equiv 1 \quad(\bmod q)$. It follows from Euler's Criterion that $2^{2 p} \equiv\left(\frac{2}{q}\right)(\bmod q)$. But since p is odd, $q \equiv 5 \quad(\bmod 8)$. Therefore, $2^{2 p} \equiv-1 \quad(\bmod q)$, or $q \mid 2^{2 p}+1$. Unfortunately, however, it has not been possible to discover the conditions that determine which of A_{p} and $B_{p} q$ will divide.

3. The Search.

A. Extent. The search for prime factors $q \neq 5$ of A_{p} and B_{p}, which was conducted on the IBM 701 at the University of California, Berkeley, was made over the following intervals:

$$
\begin{array}{ll}
1<q<\sqrt{B_{59}} & \text { for } \\
B_{59} \\
1<q<3 \cdot 2^{30} & \text { for } \\
A_{71} \\
1<q<2^{30} & \text { for } \\
71<p \leqq 179 \text { and } p=241 \\
1<q<2^{28} & \text { for } \\
179<p<1200, p \neq 241 .
\end{array}
$$

No N_{p} for $p<71, p \neq 59$, were considered, since these numbers have been completely factored. N_{241} was examined along with N_{73} to the bound 2^{30}, these numbers being of particular interest (See [7]).
B. Results. (i) The program produced a vast number of new factors, as well as several corrections to the literature (See [4]). The new factors of $N_{p}, p<250$, are indicated in the accompanying table by ${ }^{*}$ to distinguish them from factors pre-

[^0]viously known [2]. For $250<p<1200$ all factors $>300,000$ are new, and are therefore not indicated by ${ }^{*}$. A dot following the final factor means that the nature of the complementary factor is unknown.
(ii) A complete factorization was accomplished for B_{59}, A_{83}, and A_{103}, the primality of the complementary factor in each case being assured by the non-existence of a factor below its square root. The factorization of B_{69} is of particular interest, since this number appears in [2] and [3] as a prime.

The author would like to thank Mr. K. R. Isemonger for providing the complete factorization of B_{97}, as well as the much sought after factorization for A_{71}, which, previous to his attack on the number, had only been known to factor into the product of two primes.
(iii) A program was written to test the divisibility and multiplicity of all known factors, with the result that all factors were found to be correct, but none was found to be multiple.
C. The Program. The structure of the search program was similar to that described in [1]. In particular, for each p a table of differences was computed from the first $1155=3 \cdot 5 \cdot 7 \cdot 11$ terms of the sequence $4 p k+1, k=1,2, \cdots$, that remained after the multiples of $3,5,7$, and 11 had been sieved out. This table was used repeatedly by the program to produce a sequence of trial divisors, among which the factors, if any, were to be found. The remainders of A_{p} and B_{p} for each trial divisor were calculated by residue methods, both remainders being calculated at the same time because of the similarity in form of A_{p} and B_{p}. The occurrence of a 0 remainder in this calculation signalled the discovery of a factor of one of the two numbers, but not both, since obviously they are relatively prime. To examine each N_{p} required from 5 to 15 minutes, the N_{p} for the larger p 's requiring a shorter time.

4. Primality Testing.

A. At the conclusion of the search for factors, the primality of several numbers of immediate interest, namely, A_{73} and A_{241}, was still in doubt, because no factor had been found. It was then noted by Professor D. H. Lehmer that the primality of numbers of the form under consideration could be decided by Proth's Theorem [5]: "If $M=k \cdot 2^{n}+1$, where $0<k<2^{n}$, and $\left(\frac{a}{M}\right)=-1$, then M is prime iff $a^{\frac{1}{1}(M-1)} \equiv-1 \quad(\bmod M) . "$ In the present case $A_{p}, B_{p}=M=\left(2^{\frac{1}{(p-1)}} \pm 1\right) \cdot 2^{\frac{1}{(p+1)}}$
 easily obtained from the reciprocity law for the Jacobi symbol.

A program was accordingly written by Professor Lehmer for the IBM 701 to calculate the required residues. The modulus used for each test was N_{p} rather than the A_{p} or B_{p} in question, so that the reduction of the successive powers could be accomplished by multi-precision subtraction instead of division by a multi-precision divisor. The remainder thus produced was further reduced $\bmod A_{p}$ or B_{p} by a subtractive routine written by the author. The final residues in binary from both routines have been preserved on IBM cards for later checking purposes.
B. It is believed that the two testing programs were accurate, since the anticipated results were obtained in every trial case save one. In this case, B_{59}, a discrepancy existed between the literature, which stated the number was prime, and the

Table of Factors

p	$2^{p}-2^{\frac{1}{(p+1)}}+1$	$2^{p}+2^{\frac{1}{(p+1)}}+1$
3	5	13
5	5^{2}	41
7	113	$5 \cdot 29$
11	5•397	2113
13	$5 \cdot 1613$	$53 \cdot 157$
17	$137 \cdot 953$	$5 \cdot 26317$
19	5.229-457	525313
23	277-30269	5•1013•1657
29	5•107367629	536903681
31	$5581 \cdot 384773$	5.8681-49477
37	$5 \cdot 149 \cdot 184481113$	$593 \cdot 231769777$
41	181549•12112549	$5 \cdot 10169 \cdot 43249589$
43	5•1759217765581	173•101653-500177
47	140737471578113	5-3761•7484047069
53	5•1801439824104653	15358129.586477649
59	$\begin{aligned} & 5 \cdot 1181 \cdot 3541 \cdot 157649 \\ & 174877 \end{aligned}$	5521693*•104399276341*
61	$5 \cdot 733 \cdot 1709 \cdot 368140581013$	$3456749 \cdot 667055378149$
67	$\begin{gathered} 5 \cdot 269 \cdot 42875177 \\ 2559066073 \end{gathered}$	15152453.9739278030221
71	4999465853-472287102421	5•569•148587949•5585522857
73	prime	5•293•9929•649301712182209
79	prime	$5 \cdot 317$.
83	$\begin{aligned} & 5 \cdot 13063537^{*} . \\ & 148067197374074653^{*} \end{aligned}$	997.
89	1069.	5.
97	389-4657.	$5 \cdot 3881 \cdot 5821 \cdot 3555339061$ 394563864677 .
101	5.	809.
103	$\begin{aligned} & 41201 \cdot 520379897^{*} \text {. } \\ & 473000157711296729^{*} \end{aligned}$	5•17325013*.
107	$5 \cdot 857$.	843589 .
109	5.	5669.666184021**
113	prime	5-58309 2362153^{*}.
127	509•26417-140385293*.	5-18797-72118729*.
131	5-642811237*.	269665073*.
137	189061.	5.
139	5-1408349*.	557.
149	5.	1789 .
151	prime	5.
157	5.	prime
163	5•653 - $9781 \cdot 7807049$ *	prime
167	prime	5.75005713**
173	5.	c
179	5-31815461* ${ }^{*}$	c
181	$5 \cdot 9413$.	c
191	25212001*.	$5 \cdot 3821$.
193	773.	$5 \cdot 3089 \cdot 148997$.
197	$5 \cdot 4729$.	52009 -
199	797.	5.
211	5.95110361*.	c
223	95768689*.	5•11597.6530333*.
227	5.	54449•83132849*.

CONCERNING THE NUMBERS $2^{2 p}+1, p$ prime
Table of Factors-Continued

p	$2^{p}-2^{\frac{1}{2}(p+1)}+1$	$2^{p}+2^{\frac{1}{(p+1)}}+1$
229	$5 \cdot 2749 \cdot 5523481^{*}$.	C
233	30757 .	5•3108221*
239	prime	
241	prime	$5 \cdot 2640397^{*} \cdot 15594629^{*}$.
251	$5 \cdot 1912621$.	5021 .
257	c	$5 \cdot 28564009$.
263	c	$5 \cdot 119929 \cdot 731141$.
269	$\begin{aligned} & 5 \cdot 2153 \cdot 3229 \cdot 5381 \\ & \quad 4273873 \cdot \end{aligned}$	8609 -
271	10474693 .	$5 \cdot 97561$.
277	5-1109.	232681.98002601.
281	91568909 .	$5 \cdot 3373 \cdot 3827221$.
283	5.	prime
293	$5 \cdot 22396921$.	5861-12893-60488093
307	$5 \cdot 93329 \cdot 1021697$.	1229 - $7369 \cdot 254197 \cdot 201846361$.
311	$6221 \cdot 21149$ -	5
313	$42569 \cdot 681089 \cdot 6386453$ -	5
317	5	c
331	$5 \cdot 589181$.	c
337	$683437 \cdot 30499849$.	$5 \cdot 5393 \cdot 32353 \cdot 2549069$ -
347	$5 \cdot 5575597 \cdot 60988721$.	2777 .
349	$5 \cdot 8377 \cdot 763613$.	c
353	prime	5.
359	585889-5199757.	5.
367	prime	5
373	5-1493.	c
379	$5 \cdot 4549 \cdot 10219357$.	prime
383	13789-111650629.	5-4597
389	$5 \cdot 17117 \cdot 51349 \cdot 2852149$.	c
397	$5 \cdot 11117$.	$14293 \cdot 25409 \cdot 6312301$ -
401	c	5-3209 -
409	1637.9817.	5-4909 - 1531297•1856861
419	5•63689-356989	$53633 \cdot 186037$.
421	$5 \cdot 31142213$.	c
431	91373-3754873 ${ }^{\text {. }}$	5.
433	1733-5197	$5 \cdot 31177 \cdot 239017$.
439	695377 .	5.
443	c	5.
449	$3615349 \cdot 111190361$.	$5 \cdot 3593 \cdot 165233$.
457	prime	$5 \cdot 71293$.
461	$5 \cdot 14753 \cdot 7278269$.	$226813 \cdot 21102737$.
463	c	$5 \cdot 46475941$.
467	$5 \cdot 13453337$.	252181-1372981.
479	$\begin{aligned} & 6380281 \cdot 39557737 \\ & 79190197 \end{aligned}$	$5 \cdot 70309537$.
487	1949 -	$5 \cdot 7793 \cdot 890237$.
491	5.	$3929 \cdot 34631213$ -
499	$5 \cdot 43913 \cdot 1179637$.	1997 .
503	6037-10061.	5.
509	$5 \cdot 103837$.	$4073 \cdot 13350053 \cdot$
521	c	$5 \cdot 16673$ -
523	$5 \cdot 8369 \cdot 351457$.	c

Table of Factors-Continued

p	$2^{p}-2^{\frac{1}{(p+1)}}+1$	$2^{p}+2^{\frac{1}{(p+1)}}+1$
541	5•1281089•10393693 -	262302769 .
547	$5 \cdot 67887077$.	c
557	5.	c
563	5.	51797-133489553.
569	37690561 -	$5 \cdot 47797 \cdot 170701 \cdot 257189$ -
571	$\begin{aligned} & 5 \cdot 2384497 \cdot 5536417 \\ & 94600997 \end{aligned}$	c
577	2309.92936237.	5.
587	5-35221.	13658317 .
593	c	5.
599	306689-9385133.	$5 \cdot 4793 \cdot 86257$.
601	7213.	$5 \cdot 79333 \cdot 685141$.
607	c	5.
613	5.	17458241 .
617	c	$5 \cdot 86381$.
619	5•114519953.	2477-103993-284741
631	c	$5 \cdot 328121 \cdot 651193$.
641	c	$5 \cdot 62248793$.
643	5.	c
647	144563093 .	5•854041 $\cdot 9679121$.
653	5.	
659	$5 \cdot 5273$.	1534153 .
661	5.	c
673	2693•26921•419953. 4118761.	5.
677	$5 \cdot 5417$ -	c
683	5.	c
691	5.	11057.
701	5.	c
709	5.	2837.
719	c	$5 \cdot 8629$.
727	2909.	
733	5.	627449 .
739	$5 \cdot 523213 \cdot 170756297$.	$2957 \cdot 6139613$ -
743	260683037 .	
751	c	5-9013.
757	5.	c
761	82189-529657-1567661.	$5 \cdot 9133$.
769		5.
773	$5 \cdot 9277 \cdot 961613 \cdot 8979169$ $\quad 28764877$	
787	5.	47221-406093-14121929.
797	5.	
809		$5 \cdot 6473 \cdot 25889 \cdot 1948073$.
811	5.	5336381 .
821	5.	
823	19753.17678041. ${ }^{\text {c }}$	5.
827	$5 \cdot 36389 \cdot 148861 \cdot 2312293$.	
829		
839	5564249.	5.
853 857	5-3413.	5.

Table of Factors-Continued

p	$2^{p}-2^{\frac{1}{(p+1)}}+1$	$2^{p}+2^{\frac{1}{(p+1)}}+1$
859	$5 \cdot 82488053$.	41233-18970157.
863	62137.	
877	$5 \cdot 136813$.	178909.
881	292493.	5.
883	$5 \cdot 3533 \cdot 10597$.	
887		5.
907	5.	
911	109321.	5-29153.
919	15174529.	$5 \cdot 3677 \cdot 169097$.
929	11149 - 319577 .	$5 \cdot 7433 \cdot 85469 \cdot 858397$.
937		$5 \cdot 802073$.
941	5-3383837	
947	$5 \cdot 189401$ -	6522937 .
953		
967	$328781 \cdot 12056557$ -	$5 \cdot 47054221$ -
971	5.	19421 .
977		5.
983		5.
991	47569.	5-27749
997	5-3989 - $23929 \cdot 1316041$ -	
1009	12109.	5-242161.
1013	$5 \cdot 33449261$	
1019	$5 \cdot 61141 \cdot 207877$.	
1021	5.	88557457 .
1031	181457.	5-32993.
1033		5-4133•78509.
1039	4157.47577889 -	5.
1049	4640777.	5.
1051	5•92489 2030533	1513441 77933753 .
1061	$5 \cdot 49459577$.	
1063	4253 - 119057 - 2351357 -	5.
1069	5.25657.	
1087		5-4349 - 182617 .
1091	5-13093.	
1093	5-13155349 -	4373.
1097		5-114089 - 79321877 .
1103	132361.	$5 \cdot 525029$.
1109	5-13309.	115337.
1117	5.67021.	$40213 \cdot 71514809$.
1123	5.40429.	$4493 \cdot 597437$.
1129		$5 \cdot 4517$.
1151		$5 \cdot 36833$.
1153	152197.67796401.	5.
1163	5-37217-37453253.	
1171	$5 \cdot 13152673$. 5.	1369961.9178733.
1187	5.9497-151937.	
1193		5.

test routine, which stated the opposite. The number was immediately run on the factoring program, and much to the satisfaction of all concerned, a factor was found, and the test routine was exonerated.

A further verification of a kind has come from Mr. Isemonger, who, acting on the test results that A_{71} and B_{97} were composite, succeeded in finding the factorizations mentioned above.
C. All A_{p} and $B_{p}, 71 \leqq p \leqq 757$, for which no elementary or other factor was known, were tested for primality. In all, 50 numbers were tested, with the result that 14 of them were found to be prime. These are listed as prime in the accompanying table, while the remaining 36 composite numbers are indicated as such by a " c " in the proper positions of the table.

Each number with $71 \leqq p \leqq 457$ was tested twice with complete agreement in the results. No number for $p>457$ was tested twice, for testing a single number in this range required approximately 30 minutes.
5. Acknowledgements. The author would like to express his gratitude to Professor Lehmer for his very generous contributions of time and effort in constructing the primality test, which has brought this paper to such a satisfactory conclusion. In addition, he would like to thank Dr. John Selfridge for his careful reading of the preliminary manuscript, and Mr. Vance Vaughan and Robert Innes for their assistance in the production phase of the program.

University of San Francisco
San Francisco, California

[^1]
[^0]: Received January 10, 1962.

[^1]: 1. John Brillhart \& G. D. Johnson, "On the factors of certain Mersenne numbers," Math. Comp., v. 14, 1960, p. 365-369.
 2. A. J. C. Cunningham \& H. J. Woodall, Factorizations of ($y^{n} \mp 1$), Hodgson, London, 1925, p. 6-9.
 3. M. Kraitchik, Recherches sur la Theorie des Nombres, Tome II, Paris, 1929.
 4. D. H. Lehmer, Guide to the Tables in the Theory of Numbers, National Research Council Bulletin, Washington, 1941, p. 29-30, 135-136.
 5. F. Proth, "Théorèmes sur les nombres premiers," C. R. Acad. Sci. Paris, v. 87, 1878, p. 926 .
 6. R. M. Robinson, "Some factorizations of numbers of the form $2^{n} \pm 1, " M T A C, v .11$, 1957, p. 265-268.
 7. Robert Spira, "The complex sum of divisors," Amer. Math. Monthly, v. 68, 1961, p. 120-124.
