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p      Factors of Mp

8167 76835137
8171 9412993
8209 14759783
8221 9667897-18480809
8269 19630607
8273 28062017-62014409
8287 36877151
8377 134033•787439•2596871
8429 455167-927191
8467 6655063
8539 13662401
8563 32402393
8573 12345121
8623 80504329
8699 43790767
8737 6640121
8741 5926399
8849 52368383
8933 36232249
8969 13345873
9029 25913231

p      Factors of Mp

9049 28721527-28938703
9059 30293297
9109 49625833
9127 8707159
9137 2704553
9161 86901247
9199 53354201
9221 91841161
9283 29352847-34031479-41532143
9337 2838449-2405633
9403 5735831
9479 48532481
9601 3513967•16974569•17256487
9643 12362327
9743 34626623
9817 20556799
9829 14075129
9851 3723679
9859 1656313
9883 10436449
9973 7419913•10591327•19367567

Certain Properties of Pyramidal and
Figúrate Numbers

By M. Wunderlich

It is well known that despite some extensive computation [1], the only two

known solutions to the Diophantine equation

(1) a3 + b3 + c  = 3

are a = b = c = 1, and a = b = 4, c — —5. Professor Aubrey Kempner noted at a

number theory seminar at the University of Colorado that these solutions also

satisfy the equation

(2) a3 + b3 + c  = a + b + c.

Therefore, it is of interest whether or not (2) has solutions other than these two

and if so, how many. Since there are so few solutions known to (1), it seemed

reasonable to conjecture that there would be only finitely many solutions to (2).

If we change the sign of the third variable and divide through by six, we see

that (2) is equivalent to

b3 -ba  — a
+

c   — c

or

(o- 1)(p)(o + 1)       (6- l)(b)(b + 1)
n n

(c - l)(c)(c + 1)

6
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Numbers of the form

(3) (a-l)(a)(g + l) a^2

had been studied by the ancients and had been given the name "Pyramidal" because

of a curious geometric property which they possess [2]. It is also clear from (3) that

we can define the pyramidal numbers, P„ , as follows:

,. = (»t2).    •*>•

In view of the binomial theorem, they are the numbers in the fourth diagonal row

of Pascal's triangle, a fact which makes the numerical computation of these numbers

very easy.

Therefore, the conjecture mentioned concerning (2) can be restated as follows:

There is only a finite number of solutions to

(4) PX + Py  =   P. .

The purpose of this paper is to indicate how the reasonableness of this conjecture

was tested and how an examination of a table of solutions of (4) led to some inter-

esting theoretical results. In particular, S. Chowla was able to prove that there are

infinitely many solutions to (4) and hence to (2) [3]. Also, S. Segal could prove

that the only solution to

2PX = Py

is where x = 3 and y = 4 [4].

The computation of the first 88 solutions of (4) was done with the help of V.

Keiser on the C.D.C. 1604 digital computer at the National Bureau of Standards

laboratories in Boulder, Colorado. The method used was systematically to deter-

mine for every pair of pyramidal numbers P„ , Pm , m < 13,000, n < m, whether

or not Pm — Pn was again pyramidal. If we let M = Pm — Pn it is necessary to

determine whether

M = Pv,    v = 1, 2, • • • n - 1.

To do this, the following "hunting" procedure was employed: All the numbers

Pi, Pi, • • ■ Pn were stored in the machine in ascending order of magnitude. M was

first compared with P[„/2]. ([n] as usual indicates the integral part of n.) If M =

P[n/2] , a solution to (4) was found. If M < P\nm , a solution can only exist for

v = 1, 2, • • • , [n/2] — 1. If M > P[n/2] , a solution can only exist for v = [n/2] +

1, [n/2] + 2, • • ■ , n. In either case the number of values which v can assume is

roughly halved. If this procedure is repeated [log m/log 2] + 1 times, any solution

if it exists will be found. For example, if m = 15,000, the process need only be

repeated 14 times.

Table 1 lists the first 88 solutions found using this program. It required approxi-

mately 6 hours of machine time.

It is interesting to note that although S. Chowla proved that there exist infinitely

many solutions to (4), he by no means justified the great number of solutions that

were found. By imposing extra relations on (2) he was able to reduce it to a Pellian

equation which has infinitely many solutions that also satisfy (2). Therefore, he
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Table 1

y X

3
8

20
30
39
61
84
34
48

119
187
100
327
149
252
248
362
219
136
424
314
434
399
324
272
304
349
532
424
378
608
230
489
775
703
878
968
922
290
367
855
504
897
750

3
14
54
55
70

102
90

118
138
154
201
290
336
429
424
450
415
515
532
448
527
495
588
663
688
695
713
643
705
790
754
903
869
950

1064
1044
1001
1286
1430
1436
1343
1629
1621
1690

4
15
55
58
74

109
110
119
140
175
245
294
418
435
452
474
492
528
535
550
562
588
644
688
702
714
740
747
753
818
868
908
918

1098
1158
1220
1241
1428
1434
1444
1450
1645
1708
1738

1351
798
438

1146
1139
1609
1105
853

1103
1484
1089
834
528

1775
1484
2478
2099
729

2200
742

2116
2948
3138
2912
868

2252
5338
3570
1271
6152
1160
5300
5630
6340
4115
4015
7104
7062
2951
1328
7842
7294
8274
9050

1478
1818
2164
2072
2115
1941
2303
2417
2514
2584
2773
2958
3138
2954
3094
2726
3211
3595
3660
4415
4580
4408
4630
4838
6034
6390
5608
7154
7554
6586
8070
7284
7105
6788
8034
8910
7847
8094

10184
10568
10168
10618
10149
11100

1786
1868
2170
2183
2220
2256
2385
2452
2583
2738
2828
2980
3143
3154
3204
3286
3486
3605
3908
4422
4726
4810
5068
5167
6040
6482
6900
7439
7566
8034
8078
8120
8129
8280
8379
9174
9442
9592

10266
10575
11532
11660
11725
12824

found infinitely many solutions of a very special type, none of which, incidentally,

appear in the table.* Two unsolved problems are to find a parametric representation

* (Added in publication) In the March 1961 issue of Elemente Der Mathematik, W.

Sierpiñski has also shown that there are infinitely many such solutions. His proof, however,

does yield two of the solutions in the table, namely x = 8, y = 14, z = 15 and x «■ 2912,

y = 4838, z = 5167.
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which will give all the solutions to (2) and to find an asymptotic density function

analogous to the prime number theorem. This latter problem can be more explicitly

stated as follows: Let <t>(x) represent the number of integers n ^ x such that there

exist positive integers a, b such that

Pa + Pb = Pn.

Does there exist a continuous function g(x) such that <t>(x) ~ 0(2)? That is,

Um—7-r-  =   1.
x-.» g{x)

The concept of pyramidal number can be generalized by defining the rth figúrate

number of order n to be the binomial coefficient

(5) /.,-C+r1)
In this notation the pyramidal number Px is f3,x ■ Work is now in progress to com-

pute possible solutions to

Jn,x    1   Jn,y  sas Jn,z

where n = 4, 5, and 6. One might be led to believe that there are only finitely many,

solutions to (5) for n = 4 for the following reason: Whereas for n = 3 the equation

was reduced to a Pellian equation, if n = 4 a similar reduction may result in a set

of cubic Diophantine equations to which the Roth theorem may apply. If the reduc-

tion could be effected without imposing any further restrictive relations the con-

jecture would be proved. Preliminary results show that the only two solutions to

(5) for n = 4 and z < 5264 are x = 4, y = 4, z = 5; and x = 129, y = 187,

2 = 197. It is interesting to note that Paul Erdos had once conjectured in a letter

to Mr. Chowla that the only solution of

¿Jn,x   = Jn,v

is x — n and y = n + 1. As we have seen, S. Segal has affirmatively confirmed this

conjecture for n =   3.

It was further noted upon examining a decimal print-out of the first 25,000

pyramidal numbers that the last digit repeated itself in a cycle of 20, i.e.,

(6) If   x m y    (mod 20),    then   fz,x ■ /»,„    (mod 10).

This observation led to the following generalized result:

Theorem. If k = pi1pî1'2 ■ ■ ■ Pq", and n is a positive integer then for j =   1,

2, • • • q let

* = feHP7]+'"+[£]
where p"' is the largest power of p, ^ n. i.e. a, = [log n/log p,]. Finally let t = pfl

pi1 • ■ ■ p/*. If x and y are positive integers such that x = y    (mod tk), then

fn.x   = fn.y       (mod fc)

(Note that (6) is a special case of the theorem where n =  3 and k = 10.)
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Proof. For i = 1,2, ■ • • n, (x + n — i) = (y + n — i) (mod tk) so that

(x + n - l)(x + n - 2) • • • (x) = {y + n - í)(y + n - 2) • • ■ (y) (mod tk).

Also from the definition oí t, (ni, tk) = t since í is the product of highest powers

of pi, p2, ■ ■ ■ Pt which are contained in n!. So,

_ (x + n - I) ••• (x) _ (y + n - 1) ••• (y) _       ,
/n'*-ÏH- =-ñ\-      /-.»(mod k)

which proves the theorem.

It is not asserted in the theorem that tk is the smallest period. In fact, easy

examples show that in many cases a value for t can be found which is strictly smaller

than the one specified in the theorem. According to Mathematical Reviews (v. 20,

1959, Review no. 1653), the smallest period has evidently been found by S. Zabek

[5] to be tk where

=   Pi      P2        • • •  Pq   "■

This information may be quite useful in numerically searching for solutions to (5)

since these congruences limit the number of solutions that could possibly exist,

thereby reducing the amount of machine time needed for the search.
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Note on Osculatory Rational Interpolation!

By Herbert E. Salzer

Abstract. In n-point osculatory interpolation of order r¿ — 1 at points x¡,

i — 1, 2, • • • , n, by a rational expression N(x)/D(x), where N(x) and D(x) are

polynomials ^2 ajX1 and X) °jX3, we use the lemma that the system ( 1 )

[N(xi)/D(xi)\lm) =fm){xi),m = 0,1, ••• ,n- 1, is equivalent to (2) N{m\xi) =

\f(xi)D(xi)\im), m == 0, 1, • • • , r« — 1, D(xi) 7^ 0. This equivalence does not re-

quire N(x) or D(x) to be a polynomial or even a linear combination of given func-

tions. The lemma implies that ( 1 ), superficially non-linear in a3 and b¡, being the

same as (2), is actually linear. For the n-point interpolation problem, the linear

system, of order ^"=i r<, which might be large, is replaceable by separate linear

Received April 20, 1961.
f Much of the material in the present note is contained in an entirely independent (still

unpublished) study by Henry C. Thacher, Jr., who was kind enough to send the writer a copy

of his preliminary draft.


