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1. Introduction. Numerical methods for the solution of ordinary differential

equations may be put in two categories—numerical integration (e.g., predictor-

corrector) methods and Runge-Kutta methods. The advantages of the latter are

that they are self-starting and easy to program for digital computers but neither

of these reasons is very compelling when library subroutines can be written to

handle systems of ordinary differential equations. Thus, the greater accuracy and

the error-estimating ability of predictor-corrector methods make them desirable

for systems of any complexity. However, when predictor-corrector methods are

used, Runge-Kutta methods still find application in starting the computation and

in changing the interval of integration.

If, then, Runge-Kutta methods are considered in the context of using them for

starting and for changing the interval, matters such as stability [2], [3] and minimiza-

tion of roundoff errors [4] are not significant. Also, simplifying the coefficients so

that the computation will be speeded up is not important and, on modern computers,

minimization of storage [4] is seldom important. In fact, the only criterion of sig-

nificance in judging Runge-Kutta methods in this context is minimization of

truncation error. It is the purpose of this paper to derive Runge-Kutta methods of

second, third and fourth order which have minimum truncation error bounds of a

specified type. We will consider only the case of integrating a single first-order

differential equation because this is the only tractable case analytically. But it

seems reasonable to assume that methods which are best in a truncation error

sense for one equation will be at least nearly best for systems of equations.

2. The General Equations. For the solution of the equation

(2.1) y' = f(x,y)       y(x0) = y0

at a sequence of points xi, x», ■ ■ ■ ■ the general Runge-Kutta method of order m is

m

(2.2) yn+i — yn = k = £) w.-fo

where y, = y(xr), the w»'s are constants and

(2.3) ki  =  hnflxn +  Ctihn , XJn +   ]C ßifci )

with h„ = xn+i — xn and a\ = 0. By choosing the a¿'s and /3¿/s properly the ex-

pansion of the right hand side of equation (2.2) about (xn , yn) in powers of hn can

be made identical with the Taylor series expansion of k about xn through the term
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in hnm. One set of constraints on the «¿'s and /3,-/s that always results is

i—l

(2.4) ai =  Zfry.

The error to be added to the right hand side of equation (2.2) to make it an

exact relationship consists of a term Eh™+1, where E depends on f(x,y), plus terms

of higher degree in hn . For the classical fourth-order method of Kutta [6] a bound

on E has been found by Lotkin [7] who improved on a bound of Bieberbach [1]. We

will derive bounds on E for Runge-Kutta methods of second, third and fourth order

in the same form as Lotkin:

(2.5) \E\< cMLm

where c is a constant and, in a region R about (xn , y„)

(2.6) \f(x,y)\<M   and    £¡L < Li+i/Mj~l
dx'dy1

where M and L are constants and i + j á m.

3. Second-Order Systems. The coefficients to be determined are wi, u>2,

a2 and fe . Matching powers of hn through hn imposes three constraints (see, for

example, [5]) which leads to the following one-parameter family:

(3.1) wi = 1 - 1/(2«»)        Wi = 1/(2«,)

with 021 = a2 following from equation (2.4). The coefficient c2 of hj is given by

(3.2) c2 - [(*) - (A/2)]ö!/+ {WvDf

where

(3.3) D = d/dx + fn(d/dy)       /„ = f(xn , yn).

Using (3.1) and (3.3) in (3.2) and the notation of (2.6), a bound on E is given by

(3.4) I E I < [4 I (|) - («2/4) I + \]ML\

Clearly the minimum bound will be achieved if we set «¡> = § which leads to the

well known formula [5]

(3.5)        i/n+i - Vn = ïM>n , yn) + (l)hnf(xn + (f )fen , y„ + (f )hnfH)

for which the right-hand side of (3.4) becomes (\)ML2.

4. Third-Order Systems. In this case the coefficients form a two-parameter

family given by

Wi = 1 + [2 — 3(«2 + a3)]/6a2a3

W2 = (3a3 — 2)/[6a2(«3 — a2)]

(4.1)
w3 = (2 — 3«2)/[6a3(a3 — cti)]

fe = [a3(a3 — a2)]/[«2(2 — 3a2)]

: This region must, of course, include all values of x and y in equations (2.2) and (2.3)
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when a2 9e 0, a¡ 9e 0, and a2 5¿ a3. When «3 = 0 there is a one-parameter family

given by

02 = f Wi = \ — w3

(4.2)
fe = l/(4w3)        W2 = i-

When «2 = a3 = f there is a one-parameter family given by

(4.3) wi = J       W2 = f — u>3       fe = l/(4u>3)

No solutions other than (4.1), (4.2), and (4.3) are possible.

The coefficient c3 of hn is given by

c3 = [(1/4!) - (l/3!)(«22w2 + «,*«>,)] D3f

(4.4) + [(1/4 !) - ( 1/2 l)a2%2w3]fy D2f

+ [(3/4!) - a2«3few3) DfDfy + (l/4!)/„2Z>/.

Substituting (3.3) and (4.1) into (4.4), combining terms, taking absolute values,

and using (2.6) leads to the following bound on E:

(4.5) | E | < [8 | on | + | a2 | + | 2a2 + a31 + | a2 + a3 | + 2 | a3 | + 2 | a4 |]ATL3

where

ai = (A) — (ts-)[2(«2 + a3) — 3«2a3]

(4.6) a2 = (A) - «2/12

0-3 = (I) — «3/6       a4 = A-

A simple analysis shows that the coefficient of ML3 in (4.5) will be minimized if

a2 = § and a3 = f in which case we get

(4.7) \E\< (i)ML3.

If (4.2) instead of (4.1) is used in (4.4) the bound on E is

(4.8) \E\< (%)ML3

independent of the value of w3. If (4.3) is used the bound, again independent of

w3, is

(4.9) I E I < (\)MÜ.

Thus, for third-order Runge-Kutta methods the minimum error bound of the type

we are considering is given by (4.7). In this case equations (2.2) and (2.3) become

(4.10) 2/k+i - V» - (*)fci + (\)h + (i)k3

where

fci = hnf(xn , yn)

(4.11) h = hnf(xn + \hn , yn + Pi)

h = hf(xn + (f)Ä„ , yn + (|)/c2).
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5. Fourth-Order Systems. Again, the coefficients form a two-parameter family.

They are given by

Wi = \ + [1 - 2(«2 + «3)]/12«2«3

W2 = (2«3 — 1)/[12«2(«3 — «2)(1 — «2)]

w3 = (1 — 2«2)/[12a3(«3 — a2)(l — «3)]

(5.1) W4 = \ + [2(«s + «,) - 3]/[12(l - «2)(1 - «,)]

«4=1 032 = [«3(a3 — «2)]/[2a2(l — 2a2)]

a    _   (1 — «2) [«2 + «3 — 1 — (2«3 — 1) ]

2«2(a3 — a2)[6«2«3 — 4(a2 + «3) + 3]

~    = (1 - 2«2)(1 - «,)(! - «,)

a3(a3 — a2)[6a2a3 — 4(a2 + a3) + 3]

when a2 ^ 0, ffj ^ 0, «2 ^ 1, «3 9a 1, and «2 9a «3. The other possible solutions are

«2  =  «3 =   \ A4 =   1

(5.2) id, = \ w2= (§) — wt      Wi = \

ft« =  1/(611)3) 042 = 1 — 3w3 043 = 3w3

and

a2 =  1 a3 = 5 «4=1

(5.3) Wi =  6 W2 = ç — W4 M>3 = f

032   =   \ 042  =   -   1/(12W«) 043  =   1/(3W«)

and

«2   =   | «3  =  0 04  =   1

(5.4) wi = (\) — %e%       w%-\        w4 = 5

032 =   l/(12w3) 042 =| 043 =  6w3.

For a2 = 0 and «3 = 1 no solutions are possible. Proceeding as before, a tedious

computation leads to a bound on the error of

I EI < [161 611 + 4 I h I + I bt + 3fes I + I 262 + 3b31 + | &* + 6, |

(5.5) + I 631 + 8 I 641 + I b61 + I 2b6 + b7 [ + I 65 + h + b71

+ I h I + I 266 + b71 + I b71 + 2 I 681 ]ML4
where

bi = (ris) - (Ä)(a24w2 + ctsWs + w4)

bi  =   (tV)   — 3[«2as2032U'3 +  (<*2042 + a3043)ti>4]

b3   =    (tÍü)   —   (6)[a23032W3 +   («23042  +   «33043)W4]

(5.6) 64  =   (ïV)   —  |[a22«S032W3 +   («22042 +  «32043)W4]

&s = (tït) — èa22032043W4

í>6 =  (ïV) ~~ M«220322w3 + (a2042 + a3043)2M>4]

b7   =   (tÍtt)   —  02(1   +  a3)032043W4 bg  =   t-^ô-
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Finding those values of a2 and «3 which, after substitution of (5.1) into (5.6), mini-

mize the coefficient of ML in (5.5) is extremely tedious but not impossible. The

result is «2 = .4 and a¡ = (f) — (i^)(5)1/2 and in this case (5.5) becomes

(5.7) | E | < 5.46 X 10_2iliX4.

If (5.2) is used instead of (5.1), the bound is minimized if w3 = -§, in which case

(5.8) | E i < (t¥o)^¿4 = 7.22 X 10~2ML4.

Using (5.3) the bound is minimized if u>4 = }%, in which case

(5.9) \E\ < (¿fa)ML* = 19.72 X 10~2ML4.

Using (5.4) the bound is minimized when w3 = — j% in which case

(5.10) | E | < (HDML* = 17.64 X 10~2ML\

Thus, the best bound is given by (5.7) and the complete set of equations in this

case (correct to eight decimal places) is

(5.11) yn+1 -yn= .17476028Á-! - .55148066fc2 + 1.20553560/c3 + .17118478fc4

where

ki = hnf(xn , yn)

h = hnf(xn + AK , yn + Aki)
(5.12)

k3 = hnf{xn + .45573725/i„ , yn + .29697761^ + .15875964/c2)

kt = hnf(xn + hn , y„ + .21810040/c! - 3.05096516fc2 + 3.83286476/c3).

The coefficients for the classical fourth-order method of Kutta are given by (5.2)

with w3 = \. For this case Lotkin [7] found the bound

(5.13) | E | < (j&)ML4 = 10.14 X 10_2ML4

which has a coefficient almost twice as great as that given by (5.7). This classical

method may be considered a special case of the class of methods in which a3 = 1 —

a2. The method of this class for ai 9¿ \ which has the minimum error bound also

has reasonably simple coefficients and, therefore, is of some interest since it provides

an improvement of the classical method even for hand computation. This method

also has a2 = .4 and the complete set of equations is

(5.14) yn+1 - yn = OrV)(ll&i + 25fc2 + 25fc3 + llfc4)

where

h  =  hnf(xn , yn)

h = h„f(xn + (î)hn , yn + (|)fci)
(5.15)

k3 = hnf{xn + (f )A„ , yn - (ih)ki + (t)fe)

h = hnf(xn + hn , yn + (A)(19fci - 15fe + 40fc3)).

The error bound is given by

(5.16) | E | < (&fa)ML* = 7.70 X 10~2ML4.
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For completeness we list here the error bounds for two other fourth-order Runge-

Kutta procedures which have appeared prominently in the literature:

(l)«s = |, «j=| due to Kutta [6].

(5.17) | E | < (xWu)ML4 = 9.91 X 10"2MZ4

(2) «2 = h, «3 = J, w3 = 1 + 1/(2)I/2 due to Gill [4].

(5.18) | E | < [(A3*) - (tV)(!*)]ML4 = 8.83 X 10-2ML4.

6. Numerical Examples and Conclusions. It is standard procedure in papers

of this kind to finish with some numerical examples that illustrate how favorably

the methods derived compare with other methods. Milne [8] remarks that especially

in papers dealing with Runge-Kutta methods examples tend to be chosen which

favorably illustrate the derived method. In fact, it is difficult to choose meaningful

examples to illustrate Runge-Kutta methods and the reason for this is clear; the

complicated nature of the error term makes it difficult to choose functions f(x, y)

Table 1

Errors in Integration ofy'=l — y2, y(0) = 0 (Solution: y = tanh x)

Step Size (h) Number of Steps Method
Magnitude of Error

after Number of Steps
in Column 2 (X IO8)

10

.2

A
B
C

A
B
C

A
B
C

12
34
65

75
138
152

1190
2061
2492

Table 2

Errors in Integration of y' = [^(y3 + xy% + l)]/[3y2(xex — 6)],
2/(0) = 1 (Solution: y = [(ex + 5)/(6 - xe*)]m

Step Size (h) Number of Steps

10

Method

A
B
C

A
B
C

Magnitude of Error
after Number of Steps
in Column 2 (X 107)

5
10

26
6

14
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"which really serve as a test and at the same time are such that the differential equa-

tion (2.1) can be solved analytically.

Here, for the sake of illustration and to indicate that the derivations in this

paper were performed correctly, we present in Tables 1 and 2 the results of two

simple computations comparing three Runge-Kutta methods:

Method A—Equations (5.11) and (5.12)

Method B—Equations (5.14) and (5.15)

Method C—The classical method with coefficients given by (5.2) with w3 — |.

In the example in Table 1 method A compares quite favorably with the other two

while the comparison in Table 2 is not nearly so favorable. The error bound for

method A for the example in Table 1 calculated from (5.7) varies from about IO-6

to 10~ as x goes from 0 to .5, which is indicative of the fact that error bounds of the

type we have derived here are generally quite conservative. We note that it is only

a matter of a little ingenuity to find other examples to make method A appear more

or less favorable in comparison with other Runge-Kutta methods.

In conclusion, we emphasize again the main point of this paper which is likely

to be obscured by giving examples. This is that, if Runge-Kutta methods are to be

used to start the solution and to change the interval, one is interested only in being

able to bound the truncation error as well as possible. Thus, that method which

allows the smallest bound to be put on the error is in this sense best. Therefore, we

conclude that on a digital computer equations (5.11) and (5.12) should be used

when a fourth-order Runge-Kutta method is to be used for starting the solution or

changing the interval. Similarly, equations (4.10) and (4.11) are recommended as

a third-order system and equation (3.5) as a second-order system.
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