
TECHNICAL NOTES AND SHORT PAPERS

Matrix Assignments and an Associated Min Max
Problem

By T. A. Porsching

1. Introduction. Consider annX« matrix, A — (ai3) of positive real numbers,

and let $ be the set of n! permutations of the numbers 1, 2, • ■ ■ , n. An assignment

T$ is any set {awi) , a2¿<2) , • • ■ , <w(n)| of n elements of A with <p € $. Furthermore,

define the number p. by the relation,

p. = min    max    an .

We are concerned with an algorithm for determining p which is more efficient

than the obvious one of generating the n\ possible assignments then straight-

forwardly selecting p. A method for demonstrating an assignment containing p.

is also of concern, but such a method is easily evolved using the tools necessary

to determine p. Before proceeding we define a nonzero column of a set of r rows of

A as a column which contains at least one nonzero element.

2. Determination of p. Note that if R is the set consisting of the minimum

elements of the rows and columns of A, p ^ mo = max„0.eB an. This is clear if

we remember that p is the maximum of some assignment which contains an element

from every row and column of A. In particular, if oq is the element of this assign-

ment taken from the itb. row and jth column of A, p ^ an ^ a,-* where a a G R-

The same is true of the jth. column. Since this is true for i,j= 1, 2, • • • , n, p è Mo

as asserted. With this in mind we construct antiX« matrix A0* which has as its

only nonzero elements the elements of R arranged as they were in A. If the a,,-

are not all distinct, then all elements iS po must also be inserted into A0 . Thus, the

matrix A0  is simply the matrix A with all a,-3- such that an > po replaced by zeros.

Now assume that it is possible to form an assignment from the nonzero elements

of Ao . If the maximum element of this assignment is v, then from the definition of

p, p ^ v. But v ^ po, so that m = " = Mo ̂  M- This implies that p = v = po ;

that is, p is the maximum element of A0 .

For the above conclusion it was necessary to assume that'an assignment could

be formed from the nonzero elements of A0 . Suppose, on the other hand, that every

assignment of A0 contains at least one zero. Then clearly m = Mi > Mo, where px

is the smallest element of A greater than p0. Now alter A0 by inserting in A0

the px of A arranged as they were in A. This gives a new matrix A*. The same

reasoning used on A0 , shows that if there is an assignment of A* with no zero

elements, then p — px, the largest element of A*. In general, it is clear that if

Ai is formed by the process of alteration described above, and if A* is the first

such altered matrix which has an assignment containing no zero elements, then p
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equals the maximum element of A*. Since p always exists, such an A¿* will

eventually be found.

Clearly what is lacking in the above method is a relatively simple test on A?

to determine whether or not there exists an assignment of A¿ containing no zeros.

Fortunately, such a test exists and is essentially described in the following theorem.

Theorem 1. Let A be an n X n matrix of real numbers. Let Sr be a set of r rows

of A. Let k equal the number of nonzero columns in Sr. Then there exists an assignment

of A containing no zeros if and only if r ^ k for all Sr,    r = 1, 2, • • • , n.

We shall prove this theorem by appealing to a more general theorem of Hall on

complete systems of distinct representatives (CDR) [1]. Suppose

(1) Fx,Fi, ■■■ ,Fm

is a finite system of subsets of a given set S. A CDR of ( 1 ) is a set of m distinct

elements of S:

ax, a2, • ■ • , am

such that a¿ Ç Ft. Hall has proven:

Theorem 2. In order that a CDR of (I) shall exist, it is necessary and sufficient

that for each k = 1, 2, • • • , m any selection of k of the sets (1) shall contain between

them at least k elements of S.

We replace the nonzero elements of A by integers designating the column in

which they lie and let S be the resulting set of distinct nonzero integers. With

F i as the set of nonzero integers belonging to the ith row of the new A, Theorem 1

follows immediately from Theorem 2.

In view of Theorem 1, the problem now becomes one of generating all of the

sets Sr. This is solved by noting that 2, the collection of all Sr, may be put in

1 — 1 correspondence with the set Y of 2" — 1 distinct, non void com-

binations of the numbers 1, 2, • • • , n. The correspondence is the obvious

one: {nx, n2, • • • , nr\ Ç. Y <-» {row nx, row n2, • • • , row nr) Ç 2. The set r is ex-

tremely easy to generate on a binary computer since its members correspond in an

obvious manner to the binary representation of the numbers 1, 2, • • -, 2" — 1.

3. An Assignment for p. Let Ai be the matrix which yielded p. Then A<

possesses an assignment containg p. Hence, there exists at least one p such that

when the row and column containing this p are deleted from A, , the reduced

matrix so obtained, A* , has an assignment containing no zero elements. The

elements of this assignment are the n — 1 remaining elements of the desired as-

signment. Any element of A*i which does not appear in this assignment will not

affect the result of Theorem 1 if set equal to zero. However, if An is known to have

an assignment containing no zeros and the zeroing of a particular element of An

implies that the conditions of Theorem 1 do not hold for this matrix, then the zeroed

element must be an element of any assignment of A,i which contains no zeros.

This gives rise to the following procedure.

1. Sweep A* setting its nonzero elements equal to zero one at a time, applying

Theorem 1 after each zeroing. The first time the conditions of the theorem do not

hold, remember the row and column of the last element set equal to zero and delete

them from A* to get A* .
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2. Repeat Step 1 on A* , A,*2, • • • , A*(n-X) . If all remembering is done relative

to A, then the rows and columns so remembered give the positions in A of n ele-

ments which constitute the desired assignment.

4. Conclusion. We conclude with a simple example illustrating the aspects of

the preceding development.

For a 4 X 4 matrix the sets Sr are listed in the following table along with their

binary analogs.

Decimal
Number

1
2
3
4
5
6
7
8

Binary
Equivalent

0001
0010
0011
0100
0101
0110
0111
1000

&
Row

Numbers

1
2
I,
3
1,
2,
1,
4

Decimal
Number

9
10
11
12
13
14
15

Binary
Equivalent

1001
1010
1011
1100
1101
1110
1111

Sr
Row

Numbers

1, 4
2, 4
1, 2, 4
3, 4
1, 3, 4
2, 3, 4
1, 2, 3,

If

then

A =

Ao* =

«a an «« axi\

«21 «22 «23 an

«31 Oii «33 Û34

«41 «42 «43 «44/

'1 0 0 0\
0 0 2 0
0 3 0 1

\0 0 3 0/

Since the theorem does not hold for S2 =

satisfies the condition of the theorem for A*,
{2, 4},    p > 3. Note that if an Sr

it will also satisfy this condition for

Ai+i, j 3ï 0. Thus, it is necessary only to consider an Sr until some A¿ is found

which meets the condition of the theorem. In the present example A0* is altered

to give,

l\     0    4    0\
4    0    2    0
0    3    0    1

\4    0    3    0/

and since {1, 2, 4} fails,

At"

p > 4. The alteration of A*

Ai* =

for which no Sr fails and hence   p = 5.
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The process for obtaining a T0 containing p is now applied to A2*. Step 1 of

this process immediately gives one element of T$ as element a24 of A. Step 1 is

completed by deleting row 2, column 4 from A2 . This leaves,

A2i = |

Element aix of this matrix is now set equal to zero as indicated in Step 1. This new

form of A 2i satisfies the theorem's hypothesis, so Step 1 is continued by setting a43

equal to zero. The matrix A*x now has the following appearance,

The hypothesis of the theorem fails for this matrix and so another element of

T$ is ai3. Deleting row 3 and column 3 from this last matrix leaves,

M« "Mo :)
Step 1 is repeated on this matrix, and it is seen that T¿ contains a32 and

that A*3 = (1) = (an). From this it follows that the final element of T+ is axx.

Therefore, one possible assignment is T¿ = {an , «24, 032, «43} •

As a final remark we note that with obvious simple modifications the algorithm

developed here will also solve the analogous problem involving

p  = max min an.
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Formulas for Integrals of Products of Associated
Legendre or Laguerre Functions

By James Miller

1. Introduction. In this paper we derive, using a very simple technique, formulas

for the integrals of products of Legendre functions,

(1) J FÏ\(x)PVt(x) ■■■ P7T(x)dx,
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