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On the Non-Existence of Fibonacci Squares

By M. Wunderlich

The Fibonacci sequence, Fn , is defined as follows:

(1) Fi= 1; F2 = 1; Fn = Fn_2 + Fn- for    n > 2.

A P. Rollet [1] has posed the following problem. There are only three known Fibo-

nacci numbers which are squares; Fx = 1, F2 = 1, and F]2 = 144. Are there any

others? The purpose of this note is to announce that except for the known cases,

Fn cannot be a square for n ^ 1,000,000, and to describe the computational method

used to arrive at this result. The referee has kindly pointed out that the method

used is somewhat analogous to familiar "exclusion" methods such as those de-

scribed in [2].

Let p be an arbitrary fixed prime number. With respect to this prime, denote by
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F„ the least positive residue of Fn modulo p. We will then refer to the sequence Fi ,

F2, F3, • • • as the "reduced Fibonacci sequence." The mathematical basis for

the method depends on the following elementary property of this sequence.

Theorem. The reduced Fibonacci sequence is purely periodic of period less than

p , that is, there exists an N ^ p" such that

n = m(N)    implies   P„ = Fm .

Proof. Consider the p pairs of numbers

(2) (Fi,F2),        (F2,F3),        ■ ■ ■ (Pph Pp>+1)

If each of the pairs is distinct from each other, then one of them must assume

the value (0, 1) since there are only p pairs of numbers modulo p. If (Ft , Fi+1) =

(0, 1), then it is clear that (Pt+i , Ft+2) = (1, 1) = (Ft , F2), and the reduced

sequence will be periodic with period t. If, on the other hand, two of the pairs in

(2) are equal, say

(Fr, Fr+i) = iFm , Fm+i), where r < m, then we have

(Fr_x,Fr) = (Fm_!,Fm), and hence

(Fr-2,Fr-i) = (ÍV-2, Pm-i), and eventually

(Pi, Ft) = (Fr_ra , Fr-m+x) = (1,1).

Hence the reduced sequence is periodic of period r — m — 1. Q. E. D.

Now let

(3) Pi, Pt, ■ ■ ■ , Pm

be the first cycle of the sequence of reduced Fibonacci numbers, and let

F,    Ft     - • • F,

be the elements of (3) which are equal to quadratic non-residues mod p. Then for

l g, h S k, and n = h(M), we have from the theorem that Fn = Flh . Since F„ is

a quadratic non-residue mod p, Fn cannot be a square.

On the basis of probability considerations alone, it may be expected that ap-

proximately one half of the numbers in (3) are quadratic non-residues modulo p.

Hence when applying this argument to a finite set of Fibonacci numbers it may be

expected to roughly halve the number of them which could be squares. Hence if

one wishes to prove that the first 1,000,000 Fibonacci numbers contains only the

three known squares, this argument would have to be repeated approximately

log 1,000,000/log 2 times, or approximately 20 times. Of course since this estimate

is based on probability arguments alone, it is conceivable that it may take more

repetitions to verify the result.

In order to program this sieve on the 709 I.B.M. computer, it was necessary

to reserve one million storage locations in the machine, one for each of the first

million Fibonacci numbers. Since for each of these numbers we had to determine

whether it is not a square or could be a square, it was possible to use a single binary

unit, a bit, for each of these locations. Therefore, we reserved one million consecu-
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tive bits to represent the first one million Fibonacci numbers and we adopted the

following convention: If a one occupied the nth bit, this meant that Fn could be a

square. If a zero occupied the nth bit, Fn could not be a square. These bits, which

we shall call Fibonacci bits, were originally all set to contain ones.

In order to describe the program it is best to consider a special case. Let p be

the prime 7. The first cycle of the sequence of reduced Fibonacci numbers are the

16 numbers

(4) 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0.

The quadratic non-residues of 7 are the numbers 3, 5, and 6. If we rewrite (4) re-

placing the quadratic residues by ones and the quadratic non-residues by zeros and

omitting the commas, we get

(5) 1110010100011011.

In the program this expression was actually constructed as a binary number which

was then used as a mask on the Fibonacci bits. Since there are 16 bits in (5) the

masking was executed as follows: If a zero occurred in the nth bit of (5), zeros

replaced all the mth Fibonacci bits where m = n(16). If a one was in the nth bit

of (5), the mth Fibonacci bits were unchanged. The 709 I.B.M. computer contains

a single instruction which will perform such a logical operation on a single word

of 36 bits. Therefore our mask could be performed with this instruction together

with a series of shifting and storing instructions.

The entire program consisted of repeating this process with successive prime

numbers beginning with 3. After each repetition, the Fibonacci bits were tested to

see if any ones remained and the program terminated when all the Fibonacci bits

were zero, except for the three bits that corresponded to the known squares. This

required the first 32 primes and was executed in six minutes. It should be pointed

out that this method can only be used to demonstrate that a number is not a square,

rather than proving that a number is a square. For example, if one of our Fibonacci

numbers was of the form 1 + IXk<at pn where pn represents the nth prime number,

its corresponding Fibonacci bit would remain a one for all primes less than N,

and N would not have to be too large for this test to become unreasonable even

for a very fast computer.

The author would like to express his appreciation to Dr. W. Macintyre who

provided him with the free use of the facilities at the Computation Center of the

University of Colorado and to Dr. L. Moser who first suggested the problem to

the author.
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