
The Euler-Maclaurin Functional for

Functions with a Qiiasi-Step Discontinuity

By Israel Navot

1. Introduction. Following previous extensions, [1], [2], of the form assumed

by the Euler-Maclaurin functional

(1) i{/).SZ/(—) -« ( f(x)dx; 0<a£l,
r_l      \     n     / Jo

for functions /( x) with integrable branch, logarithmic and both branch and logarith-

mic singularities at x = 0, consideration is now given to this functional for func-

tions fix, a) which depend on a parameter a in such a manner that for a = 0 we

have

(2) Lim/U 0) = /(0, 0 ) + C

where C ^ 0 is a numerical constant. For functions f(x, a) of this type it is generally

true that for small values of a their derivatives with respect to x oscillate strongly

in the vicinity of x = 0, the peaks of the successive derivatives being proportional

to successive negative powers of a. Obviously, therefore, when n in ( 1 ) is related to

a so that na is of the order of unity, or less, the negative powers of na in the ordinary

Euler-Maclaurin asymptotic series may render it useless for the numerical evalua-

tion of the integral or sum in (1) since it may diverge from the beginning of the

series.

Of the various possible quasi-step discontinuities, we consider here that intro-

duced by the function tan    -, which is perhaps the simplest analytically. The sub-
ex

sequent discussion and examples will show that some other types of quasi-step

discontinuities may be treated similarly.

2. Derivation of the Required Formula. Let

(3) f(x, a) = gix) tan-1 - ; a > 0.
a

where gix) is an arbitrary real continuous function, with continuous derivatives up

to the order 2m, at 0 ^ x ^ 1. Setting

gix) = P2m-iix) + Q2mix);

Pim-Ax) = £ 9-¿P-xk,       QM =  f  J-^L ix - r)2"*-1^
fc=o      fc! Jo   (2m — 1)!
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and x = y/n, we have by an analysis similar to that leading to equation (4) in [1]

E\fU - ï:f(V—,c)-nffix,a)dx

»   «(0)(4)

- Z1 ^ (z)"~l'/^U, «) + "E ft(a, n«) /
¡^3      j»¡    \n/ k=o \n/      kl

In (4) 5», (a) is Bernoulli's polynomial of degree ¡x while

" £„(a) dTl

p-i„

(5)

Ct(o, na) = a tan 1-/   yk tan 1 — dy — X) —^
na       Jo fta /i=i     m dî/"-1

y  tan"
najy=i      Ji

52m(a — j/) d2
(yk tan '^jdíy,

(2m) !       ífy2m V 2/ /

where Bimiy) is the periodic Bernoullian function of order 2m. Chid, na) is inde-

pendent of m(fc ^ 2m — 1) and for a = \ or a = 1, which are mainly of practical

interest, is readily transformed into

ina)
i-y

2p + 1
-log na +

2phi
(6)

+ i-)' I™ y%l*ia + iy) + iia - iy)\
Jo

dy

-A(o)|;

+ 1^ g2?_2,(a) (na)2?+1.

j3        ;  2p - 2M   2m + 1 '

when k = 2p; p = 0, 1, • • • m — 1, and into

for   p = 0

for   p = 1, 2, • • • m — 1

— ( — •)* <-Wa')
2j>+2

(7)
2p + 2 i +<->'{*

2jj+l 1
tp {ipia + iy) - ¡Pia - iy)} dy

B2p+2ia) it       ,    ,p_ ,  , ina)

2p + 2 2 2p -f 1

when ft = 2p + 1; p = 0, 1, ••• m — l.^(z)is the logarithmic derivative of the

Gamma function. The remainder p2m is given by

k 2m—1 (2m—1) f A ^ 2m

(8) P2„

where

(9a)

Ek   =   —

/-.\2m-l

=  y-J       C2m-iia,na)ç

X0)  f
e!     A

(0).      v
(2m - 1) ! "*" o C*

^(O)  rB2mia - t») - B2mia) d

k dx2m

(9b)

£2m-l   —    — I —

2m—1      (2m-l)
(0)

(2m)!

• Í xk tan-1 -jdx; k = 0, 1,

Jf
(2m - 1) !

B2mja — na;) — 2?2m(

(2m)!

a)   d"1   i   2m-l ,       -1 a\   ,-¿M*   tan *r*

2m

B2mja) x

2m    2/ '
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£2m   —

l\2m_1 r1 B2mia - nx) - B2mia) d2I\n/       Jo (2m)! dx2m
(9c)

Í
{2m) i    \

g \T)       , \2m-l   ,        -1   X j   i   j
ix — r)       tan     - dr> dx.

fo   (2m - 1) !

In some cases to be discussed soon, the term containing C2m_i(a, na) should be

deleted from p2m and lumped together with the other terms of this type.

3. Discussion of Formula (4) and the Numerical Evaluation of the Coefficients

Ckia, na). The asymptotic summation formula (4), which is an error formula for

the approximate evaluation of an integral by summation or the approximate evalua-

tion of a finite sum by integration, is valid for all non-negative values of a and integer

values of n. Its main use and advantage over the ordinary EM asymptotic summa-

tion formula is when na remains bounded, or is of a smaller order than n, as n —> oo;

or when n is relatively large, and fixed, and a —> 0. In these cases, as pointed out

before, the remainder in the ordinary EM formula may absolutely increase with

m even for small values of m. On the other hand, when na is of the order of n as

n —» », the accuracy yielded by the ordinary EM summation formula and by (4)

(after deleting the term containing C2m_i(a, na) from the remainder p2m and lump-

ing it with the correction terms) is of the same order, ( l/n) m~ , as will be shown in

the following section where p2m is estimated. Practically, however, the ordinary

EM summation formula should be preferred in that case since the coefficients B^a) ;

p. = 1,2, • ■ • 2m — 1, which depend only on a, are more conveniently available

than the coefficients Ckia,na);k = 0, 1, • • • 2m — 1. The evaluation of Ckia,na)

from equations (6) and (7) for a = \ and a = 1 is straightforward except for the

integrals. The author is not aware that these integrals have been tabulated but

rapidly convergent series expansions are readily available for them. Thus, for

0 < na á 1 we have

r>na

i-y        initia + iy) + *(a - iy)} dy
Jo

. ., r 2p i /   i      i \.
= (-)   /    y  s\—nr^ ~--( dv

Jo 2 {    a + iy      a — iy)

/na
yPhWH + a + iy) + ^(1 + a - iy)} dy

{^o 2ß + 1 \ a / a 7
+ (-yina)w f(-Y *W(1 + a)       {na)>
+ l    Mna°       h{    } (2M)!       2p + 2m+1

and
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/na 1
y2p+1 i Ma + iy) - iia - iy)} dy

= i-y f"1ril.!--L^ + -LAdy
Jo 2i {    a + iy      a — iy)

(m       + (-)* r*»!*+,i(*(i+«+<») -*w+o-w>i*

|^=o 2m + 1 \ a / a )

+ <-jwm.£ (-)■ *7<i + " - <■;»'■ ,.
^=o (2m + 1) !     2p + 2m + 3

The radii of convergence of the series in (10) and (11) are 1 + a and the numerical

values of the coefficients may be obtained from tables [3] of ^("' (a;) (m = 0, 1, 2, • • • )

or with the aid of a table [4] of Riemann's zeta function f(s) = f(s, 1), use being

also made of the functional relation

r(s,D = (2s- i)-f(S) i).

For 1 < na i 2 we have to add

Ml / \   2u+l

-i    na

r ( na y
• 1 \1 + a)

1 + a

and

(12b) (1 + a W± ±^L (^-Tl - tan"1    "   .
l^=o 2m + 1 \1 + a/ 1 + aj

to (10) and (11) respectively, and to replace ^(M)(1 + a)/ßl in the series in these

equations by ^<",(2 + a)/p\ which is related to it by

(13) —¡n-(TT^ + —¡n—'      *-m,-

The radii of convergence of the new series are 2 + a. The evaluation of the integrals

defining Ckia, na) may theoretically be carried out in this way for any value of

na, and their asymptotic behavior as na increases may thus be established.

4. Estimation of the Remainder p2m. Not very sharp but generally sufficiently

good bounds, valid for a = \ and a = 1 and easily obtained from equations (9),

are the following:

'lV"-1,    M-i I B2mia)gmi0) | .

(14a) ' £k ' - W       Pi a 2m(fc + l)l     '

0 < 6k < 1, ft = 0,1, • • • 2m - 1.

-»-»(0) i
(14b)     | ,2m_x | ^ (i)2"" (Ö-^ + ï) i Bim(al9Z

\n/        \    2m 2/ (2m) !
0 < 02m_i < 1

\£2m\   ú

(14c)

A Y""1 ß     i*+N   aízniA-         1       \\ \B2mia)g(2m\Û\
\ñ)       ^\2+N"a{2m + 2m-^i)j-—(2mjl-'

0 < 62m < 1;       NV2 = 3,       Nx = 2;        0 ^ £ ^ 1.
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Equations (14) provide an upper bound for ^lloEk- Hence, referring to equation

(8), we see that except for the first term in it, p2m decreases as ( 1/n)   _ for a fixed m.

5. A Numerical Example. As a simple application of formula (4) we shall evaluate

numerically the integral

.      If'       _il + i.    -xl-i,,        f1.    -i2-.r,    .,»,
I = - /   tan    -tan    -dt =  /   tan    -■ tan    - ax,

2 J-i a a Jo a a(15)
a = 10""*,

by the trapezoidal rule with n =  10. The approximating sum to eight decimals

yields

(10) I £ tan"1 ̂ —-- tan"1 — + ±- (W1 -\ = 2.33846010.
n v=\ na na      2n \ a)

Since all the odd derivatives of the integrand at x = 1 vanish, the first two correc-

tion terms are

-- Co(l, na) tan-1 - =     0.11543535
n a

(17)

(n)  C'l(1'na)^T^= -°-0000003L

The approximate value 2.45389514 of / thus obtained checks well (disregarding

rounding errors) with its exact value to the same number of decimals computed

from

1 - I {¡~2^1c + l(2^W- ■■)^~lldx = (i)
(18)

~ (I ~ Í) a l°g a ~ (1 + l0g 2) \¡ ~ V a + °ial)  =  2-45389513

6. Integrands with a Different Type of Quasi-Step Discontinuity. We shall

now determine the correction terms in evaluating by the tangent-trapezoidal rule

(a = |) or trapezoidal rule (a = 1) integrals of the form

(19) r i'    ,    w      ̂ l*,
■   tan    -dx= f gix)

Jo

where gix) is an odd function of sin- x and a is a positive parameter. The quasi-

step discontinuity at x = 0 (which occurs here not in the integrand but in some

odd derivative of it) is introduced by a different function, tan-1-—, from
a

that investigated previously. The vanishing of all the odd derivatives of the integrand

at both x = 0 and x = 1 shows, as is well known [5], that the ordinary Euler-

Maclaurin summation formula is unable to provide correction terms since all of

them vanish. Special methods are therefore required. Furthermore, the periodicity

of the integrand calls for a comparison with the methods of Luke [6] and Davis

[7], especially when na is less than unity. This will be made later.
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Writing

(20)

where

fix, a)  = fi ( X, - a } + fiix, a)

fix) = gix) tan

7T
sin - x

(21)

U (x, I a) -1   X
gix) tan    — x,       f2ix, a) = gix) tan

2a

I  .    ir r    \
,a\Sm2X-2X)

2       ir ir
a  + - x sin - ,f

we see that /]k (*•;") is of the form of (3) while f2ix, a) can be expanded into a

double series (which in the interval 0 ^ x ^ 1 converges absolutely and uniformly

for all positive values of a)

/,(*, a) = ^{W - \W* + W ~ ■■■}

(22)       = g(x){£/(1 - V + V2 - ■■■) - !C/3(1 - 3F + 6F2- •••)

where

If

+ \U\\ - 57+ 15F2

/   .       IT X      \
a ^sin g ^ ~ 2 V

)

(23)

2    .     X .       7T
a -\- -x sin - a;

F =
-^sm-x---^ L7_gV8m 2* "27

To evaluate the Euler-Maclaurin functional E{f2}a to an accuracy at which terms

only up to, say, n~ are retained, we write

(24)

where

(25)

E\f*U = E{gU)a + E{~gUV}a + E[gUSi,t + gT3}a

Shi = V2 - Vs + ts = -\w + \w' -

For the  first two terms of (24) we have from (4)

■W IT

2* ~2

■W IT

sin - x — -x

(26)

E\gUU = -aj¡¿E\9

2X

■ tan    — x\   = a — C3 I a, - na )
2a da       \    T      /

©w+jL^ar^---
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and

E{ -gUVU = a±±aE{-9. (sin \x - \ xj • tan"1 ¿ *}

(27) _

„=1,2,4     m¡       vv        «£m

while for the third term of (24) we have from the ordinary Euler-Maclaurin formula

[1]

(28) E{gUSh2 + gTtU =   £   ^ (-Y ' -^ [ff£/&,2 + o^U + ß6.
)i=l,2,4       M'        VV «#

Ô6,i, 56,2 and Ä6 are of an order of magnitude not larger than n~  and can readily

be estimated.

The correction terms in evaluating ( 19) by the tangent-trapezoidal or trapezoidal

rule to an accuracy of n" may therefore be obtained from

*=i,3 \n/ \    ir     /    ft!        ,.=-2,4 w     m! \   it   /     nn

and

f ' /,(*, a) ds - - £ /2 (^ , «) + - Bi(o)/,( 1, a)
Jo n >.=o     \   n        /      n

<30)  --(Ka(4-)W-£©'^«"'«-->
-    (06,1 + S6,2 +  Ä.)
n

on adding these equations. We thus obtain

i sin-z n-i    /   ,    \ sin I--1

/   o(a;) tan-1-— dx-£ g (-) tan-1-—
Jo a Jir=o    \   îî   / a

+ -£1(0)0(1) tan"1 -
(31) w «

— ZI  ( - )     Ci ( a, - na )
fc.1,3  \n/ \      7T       /

gW(0)
ft!

- (n)a ¿ Cs («•.na) ?4r © +remainder

where the remainder is of an order not larger than n   6.

As a numerical example we choose

gix) = sin - x ,       a = 1,       - a = 10- ,       n = 10.
2 IT
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The first three correction terms to nine decimals are

- (-) d (a,-n«) | = 0.001385560

1\*     /   2     M   /xx'3
/  CAa,-naj^-l^)   =0.000000837

- J a — C3 (a,- no) ^ (IJ   = 0.000000023
«/      da       \    ir      / 3! \2/vv

and their sum is 0.001386420. The exact value of

7T
sin - x

(32)

/   sin - x ■ tan * — dx
Jo        2

n [ _i       \2    n/ a
Itairla|

to the same number of decimals computed from

(33) f1   .   w       .    _1SÍnÍa:, /— —
/   sin - x ■ tan    -dx = yl -f a2
Jo 2 a

and from a direct computation of

'fc'^H)-'--'8^1*"-'1tan- + - tan
a 2

is 0.001386421. The neglected remainder in the correction is thus of an order not

larger than the rounding errors.

It is interesting to compare the approximation to (32) given by the correction

terms above with some other estimates of it. The point of departure in both [6]

and [7] for obtaining such estimates is the Fourier series expansion of the integrand,

i.e.

sinlx      í i i
•      X        .    _—1 ¿ )    -a   i     i    -3a ,     i    -ba ,-> ,

,    s.    sin - x ■ tan    - = < e    + - e     cos wx + - e     cos 27ra; +
(,34; 2 a { 3 5

— < é~' cos wx 4- - e_3° cos 27ra; 4- - e~b° cos Sirx 4-
{ d O

where

(35) a = sinn-1 a > 0.

Observing that

(36)     /   cos px dx — - < £ cos MX - + - + - cos MX> =
Jo n  l»=i n      2      2

— 1; M = 2nft,

ft = 1,2,

0; all other in-

teger values of m
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we have for (32)

oo     f   -Unk-l)a -(4nfc+l)o

^7' tí \4nfc - 1 ~ 4nft 4- 1

To obtain a good approximation to (32) by summing this series, after substituting

the numerical values of n and <r, would require quite a large number of terms to

be taken. An estimate of (37) following [7] by considering the analytic continuation

of

,/       .        1   .   7T       .     a + i sin iwx/2)
fix, a) = —. sin - x • log-r-r—-.—t^-

2i       2 a — i sin vïïx/2)
(;«)

1.x       .     sinh f + ! sin (xx'/2)
= — sin - x ■ log -r-,-——;—-.—

2i       2 sinh a — i sin (x.r/2)

in the z = x + iy plane and expressing (37) as a contour integral gives

f   oo      — (ink— l)cr —(4nfc+l)<A o / \ .-»

(39)   i£^_--^—--}^maxl/(g,a)l-12exP-(7irTnJs,fOraU0<r< 2«,
[kZiink— 1     4nft 4-1J      2í¡r 1 — exp.( —xrn) x

where lT designates the line x 4- ir, — =o < x < ». Since xm is rather small, this

also is not helpful in estimating (32).
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