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Part I. A common type of computation in applied science is evaluation of the

definite integral of the product of two or more functions. Often, at least one of the

functions in the product is phenomenological (i.e. pointwise determined from physi-

cal experiment) and it is not unusual to find that all the functions of the integrand

product are such.

In the absence of proven mathematical models of the phenomena associated

with the experimental determinations, one of several devices is commonly em-

ployed to obtain values of the function at unmeasured points. Least squares fitting

to one of several classes of functions is one of the more common and is particularly

useful (if weighted by the reciprocal of the experimental uncertainty) for purposes of

gaining an insight to the nature of the physical phenomenon. When, however, the

only immediate objective is to obtain functional values for integration purposes, a

completely acceptable method is to approximate a smooth function by a minimum

of line segments such that linear interpolation between successive end-points will

not violate experimental error. Whether a weighted least squares fit or a linear

approximation is used, it is obvious that at almost all points the physical function

will not be represented correctly. Just how incorrect the resulting integrals or subse-

quent computations will be, due to errors in the functional representation of the

integrands is the subject of many investigations. These investigations or sensitivity

studies are extremely useful to establish requirements for maximum acceptable un-

certainties in experimental determinations. For example, in certain measurements

of phenomena associated with atomic nuclei, it is relatively easy to obtain values

accurate to ±10% and almost impossible to improve accuracy beyond ±2%. To

obtain a 2% measurement requires many times the effort than to obtain a 10%

measurement. Thus, one requesting measurements must have a sound basis for

requesting high accuracy experiments.

In the evaluation of definite integrals of phenomenologically determined func-

tions, there are two sources of error. The first is associated with the uncertainties of

the integrand and the second with the numerical integration scheme. Errors as-

sociated with numerical integration are subject to error analysis but, for the scientist,

it would be extremely useful to limit the errors to a single class, namely, those

associated with the uncertainties in the integrand. It is the purpose here to describe

an exact method of integration applicable whenever the integrand can be represented

as the product of "n" linear functions.

There are two cases to be considered. The first is immediately tractable and the

second requires an intermediate step. Case I is defined as an integrand which is the

product of empirically defined functions only. Case II is an integrand in which one

or more of the factors of the product is analytically defined. For Case II it is simple

to replace the analytically defined function or functions by a practical minimum
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of line segments such that linear interpolation between successive points yields

intermediate values which do not deviate from the given function by more than a

specified fraction [1]. Case II is thus reduced in form to Case I.

The statement and proof of the theorem appropriate to the case of "n" linear

functions is presented in Part II of this paper. For this discussion the example of the

definite integral of the product of three linear functions is presented without proof

since the general proof is in Part II. If

fix)  = ax -\- b

gix) = ex + d

hix) = ex -\- g

/    fix)gix)hix) dx = Xi      Xl   fixi)gixi)hixi)
xi ^      L

fjxi)gjxi)hjx2) + fixi)gix2)hjx1)

3

,fixi)gix2)hixi) + fix2)gixi)hix2) + fixi)gix2)hix2) + fix2)gixi)hixi)
(1)

+ fix2)gix2)hix2)   .

In the special case: hix) = 1 the result is,

(2) *^* [fixi)gixi) + fMd(x2) + f{x2)9ixi) + /(*>*<*)] ;

and if gix) = hix) = 1

(3) ^p [fixi) + fix,)].

If in (1), (2), (3), and (22), the product of linear functions is evaluated at n — 1

equally spaced points (producing n equal intervals), and the Newton-Cotes

formulas of order n are applied, the numerical results will be identical since both

processes are exact. Futhermore, as would be expected, our formulas can be con-

verted to appropriate Newton-Cotes formulas through trivial but tedious manipu-

lation. For more than one linear function our formula needs fewer arithmetic oper-

ations for its evaluation than the corresponding Newton-Cotes formula.

Part II. The Definite Integral of The Product of Linear Functions of One Variable.

Theorem. Let {S(m)}™-0 be such that

(1) Ü i (a + rt) +yib + rt)¡  = ès(m)ym,
¡=1 m=0

and

(2) Cin, m) = n!/(m!(n - m)l),
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in+l—k n+l—k
o —a

then

(3) h = f Û « + r<) dt = b-^r 22 Sim)/Cin, m).
Ja    (=1 U  -4-   1 m=0

Proof. Let {p(fc)}¿Lo be such that

(4) Û it + r«) = E Pik)f-k
i-1 fc-0

then

/» = Ê p(fc)
t=o n + 1 — fc

= —r-r 2^ p(fc) I-, a       b-—¡—-;-.
n + 1 tí ö n+1 — fc

From (1), <S(m) is a polynomial: homogeneous of degree n in (a, 6, rx, r2, ■ • • , rn) ;

of degree at most (n — m) in a; of degree at most m in 6; symmetric

in (ri, r2, ■ ■ • , rn) ; and linear in each of (rj,, r2, • • • , rn). Hence Sim) can be ex-

pressed as a linear polynomial in the p(fc)'s in the form:

m      n—l

(6) Sim) = EE   9im, fc, l)pik)an~'-kbl.
¡_0 k=m—l

Let Pii, j) be the set of all (xi, a,*2, • • • , x¡), where j of the a;'s are equal to a and

the remaining (¿ — j) of the a;'s are equal to b. Then

(7) Sim) =   Z  H(n + r«)

where the number of summands in (7) is C(n, m).

For fixed k and Z, dim, k, I) is the coefficient of

(8) II rian~l-hbl
»=i

in Sim). Since each summand of (7) has exactly m a;'s equal to b, the sub-sum of (7)

over those summands which when expanded contain the term (8) is

(9) E    ïlixi + n)    E    f[ixi + ri+k)
F(k,m—l) ¿=1 P(,n—k,l) ¿»=1

where the undefined expressions for k = 0, n are replaced by one. But g im, k, I)

is the number of terms in (9) or

gim, fc, I) = C(fc, m — l)Cin — fc, I).

Using this in (6), we have

m      n—I

(10) Sim) = 22   H  Cik,m - l)dn - k, l)pik)an~l~"bl.
1=0 k=m-l

Suppose that
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(H)

then

(12)

where

In = b—r*22fivi)Sim)
n + 1 m=0

In = —r-..  z2z2   E   dik,l,m)
n -\-  1 m=0 1=0 k=m-l

dik, l, m) = /(m)C(fc, m - l)dn - fc, Op^K^'V

From Figure 1,

n        n       n-

From Figure 2,

From Figure 3,

In = —r—: E E   E   dik,l,m).
n -f-  1   ¡=0 m=i k—m-l

-, n   n—î  k-i-l

In = —— 22 Yu E dik, l, m)
n +  1  ¡=0 *=0 m=l

M

b — a
n    n—k k+l

h = —|—r 2212 E d(fc, Z, m).
n +   1 £=0   i=0  m=

m = n

Fia. 1.

M m = n

m = X

k = n-i

Fia. 2.

•K

0- K

Fig. 3.
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Thus (12) is

r   _ n n—k fc+Z

(13)    /„ = °—-i E pik) E an-k~l bl Cin - fc, 0 E Sim) C(fc, m - I)
» t  1 W 1=0 m=l

Comparing (13) with (5), we see that (11) holds if and only if

k+l
n + 1 1

(14) 22fim)Cik,m-l) =
m=i n + 1 — fc Cin — fc, Z)

il = 0,1, ■•• ,n - fc), (fc = 0,1, ••• , n).

Setting fc = 0 in (14), we have

(15) W-Cçb)' (' = 0,1,...,«)

Before we show that (15) is a solution of (14) for k ^ 0, we note that

(16) Cii,j) + C(»,¿ - 1) = .,..*!  ., + ^

j'K*-i)I      0"-l)l(»-J + l)!

i

m-j+i)\
and

•[«-j + D+j] = CÜ+ l,j)

1     + 1 = Uji - 1)1      il+ 1)1 (t - Z - 1)!

di, I)      Cii,l + 1) i\
(17)

Zl(t-Z-l)!    [(* - l) + il + 1)]      i + 1 1

(»-1)1 i i     C(t-1,0'

Suppose that (15) is a solution of (14) for fc = q, or

MSN ^ C(g,m - I) _       n + 1_1 n     n s
(18) è     C(»,m)      -»+l-9C(»-8,0'   " = °'*' " " ' *n ~ s)"

Then for (Z = 0, 1, • • • , n - q - 1),

°^lCiq + l,m - 0
E
m~i Cin, m)

q+l
Ciq + 1, m - I)   . 1

+
1 9-r-i

=      X      +   E
C(n, Z)      mfi+i C(w, m)              C(n, q + 1 + Z)

=      1      +   g C(g,m-Z)        g   Cjg,m-l- 1)                  1

Cin, I)      m=i+i Cin, m)          m=i+i         Cin, m)              Cin, q + 1 + Z)

= E C((?'m~¿) + 'f C(9,m- Z+1)
m=>     dn,m) m_Wl         Cin,m)
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n+ 1        n - q+ 1 1 _ n +1

n+ 1 — q        n — q     Cin — q — 1,1)     n + 1 — g + 1 C(n — q + 1, /)

Thus if (15) is a solution of (14) for fc = o, then (15) is a solution of (14) for

fc = q + 1. But (15) is the unique solution of (14) for k = 0, hence by mathe-

matical induction (15) is the unique solution of (14). Hence (11) is equivalent to

(15) and the theorem is proved.

Corollary.

(19) fin« + «)« - «^'""f " «-> + «■- ->Ja  i=i n + 1       m=o Cin, m)

where Cin, m)  = nl/imlin — m)\), il—-—J is the integer part of (—-—J,

and Sim), (m = 0, 1, ■ • • , n), are defined by

n n

(20) û {(<W» + di) + yic-ib + d<)} = E S(t») 2/'"-
> =1 m=0

This follows upon setting rt = di/c, ,0,^0 and multiplying by H¿ii c,- in ( 1 ) and

(3). For d = 0, we need only take the limit of (19) and (20) as c, —-> 0.

Let a» = c¿a + dt, b, = c¿6 + d¿, (¿ = 1, 2, • • • , n) and suppose that a, and 6,

are given instead of c, and d,, then Sim) are defined by

(21) ft («» + 1*0 - Ê S(m)2/m.
«-1 m-0

For n = 1, (19) reduces to the trapezoidal rule

J   icit + di)dt = b-^aiai + bi).

For n = 2,

[ ieit + di)(c2Z + d2) dt = ^ [aia2 + glba + h(h + 6i62]

6 — a

6

b — a

6

b — a

[2aia2 + aiö2 + 6ia2 + 2oi62]

[ai(ai + a2 + 62) + oi(a2 + 62 + 62)]

Kai + (ai 4- 6i)(a2 + 62) + bi b2],
6

and this is Simpson's Rule.

For n > 2, all of the Sim) are obtained from (21) by only 2n+l multiplications,

and (19) may be rewritten as

(22)      f  f[ id + *) dt = b-^     E     ein, m) [Sim) + Sin - m)]
Ja    i=l -ft-W ">-0
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where

n Kin) ein, 1) ein, 2) ein, 3)       ein, 4)       e(n, 5)

3 12 3 1
4 60 12 3 2
5 60 10 2 1
6 420 60 10 4 3
7 840 105 15 5 3
8 2520 280 35 10 5               4
9 2520 252 28 7 3               2

Note that if a,-6¿ > 0(¿ = 1, 2, • • • , n) then Sim) is a sum of terms with all

signs alike, thus the use of (21) with (19) involves so subtractions.

Note also that if some of the linear factors of the integrand are repeated the

number of multiplications needed to evaluate all of the Sim) may be reduced by

applying the binomial theorem.
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