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of non-symmetric matrix for which SOR will always converge provided that a

suitable value of w is chosen.
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On Inverses of Finite Segments of the
Generalized Hilbert Matrix

By Jean L. Lavoie

The purpose of this note is to show that two theorems given by Smith [1J on

inverses of finite segments of the generalized Hilbert Matrix can be proved in a

simple manner by using results from the theory of generalized hypergeometric

series.

The usual notation for generalized hypergeometric functions will be used :

p

in \       °°  II («y)K K
z

IT (6y)iy=i
K\

where

/ n      r(o- + M)

T(o-)      •

See Erdélyi [2], Chapters 2 and 4 for details.

Let 77„ represent a finite segment of the generalized Hilbert matrix, i.e.,

(2) 77n - {ha),       ha m (p + i + j- iy\   it j = l, 2, • • • • n.

Here n is the order of the segment and obviously

p * -1, -2, •••, -(2n - 1).

We shall assume that the above conditions on », j, and p hold throughout this

paper.
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It is well known that the inverses of the finite segments are given by :

Sn = («/*)

foN      «y (-l)w_r(n + p + »)r(n + p+j)_

w   »     p + i + j _ i r(*)r(i)r(p + *)r(P + j)r(n - i + i)r(n - i + 1) '

(see Smith [1] for references).

Smith has proved the following theorems. If sn" is defined by (3), then

(4) I) £*"-t*"-(-l)'HT(A+-}"+lV

(5) II) Z sn(i = n(p + n).

Now if we use (3) and (1), we easily obtain

Y   « (-l)mr(n + p + l)r(n + p +j)

Ü  "        T(j)T(n)T(p + l)r(p +7+ l)r(n - j + 1)

/l - ?i, n + p + 1, p + j I A3iH   p+i + i,p + i   IV

The zF2(1) on the right of (6) is a terminating series but is not of Saalschützian

type since the sum of the numerator parameters is equal to the sum of the de-

nominator parameters.

To evaluate this particular 37^2(1), we start with the formula

,_v (a,b,c\\ r(e)r(/)r(s) (e- a,f- a,s\   \

(7)        3 2\e,f   I V - T(a)T(s + b)T(s + c) ̂  \s + b, s + c   \l) >

where s = e + f — a — b — c, (see Bailey [3], page 14, (3.2.1)).

If we substitute 1 — n, n + p + 1, p + j, p + j + 1, p + 1 for a, b, c, e, f,
then s = 0, the 3f2(l) on the right in (7) reduces to unity, and a simple limiting

process shows that the ratio    .      —r must be replaced by ( — l)"+1r(ii).
T(l — n)

Hence we obtain

(8)   Af^.V/^ll)\      P+J + l.p + 1       |/

(   1 \«+i/„ , a\ r(n)r(p + 1)
(-1)     (P+J>r(n+p+l)

for 1 ¿ j ^ n.
To prove Theorem I, we now only need to use (8) in (6).

To prove Theorem II, we sum from j = 1 to j = n on both sides of (4) and we

immediately obtain

V , «y      (    1NK+1 r(n + p + 1)  p /l-n, n + p + l
ihSn   =(_1)     r(»)r(p + i) sFlV       P + i

by using Gauss's theorem, (see Erdélyi [2], page 104, (46)).

An interesting result can be obtained from the fact that

77„iS» = *Sn77„ = 7

where 7 is the unit matrix.

1) = n(p + n)
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In terms of the matrix elements, we have

(9) ¿A«**«««       ««=(?    'Î    **'.
JT=1 (I     H     i> = 3-

Now from (2), (3), and (1), the last relation implies that

/l - n, n + p + 1, p + i, p + j I A

(   , v+i (p + Q(p + j)r(j)r(n)r(n - j + l),~ *    ; (p+D.(p + j).

for 1 ;£ », j ^ n.

This can be proved directly. Indeed the 4^3(1) is a terminating Saalschützian

series, and hence, applying Whipple's transformation (Bailey [3], page 94), we

obtain a terminating well-poised ¡.F^l) which can be summed (Bailey [3], page 25,

(4.3.3)) to yield (10).
However, it seems worth noting that if we use the contiguous function relation

(«i - a2)F = aiF(ai-l-) - mF{at+)

in Rainville ([4], page 82, eq. (14)), with aj. = p + i, a2 = p + j, we obtain

/l - n, n + p + 1, p + », p + j I A
4 3\ p + i+ l.p+j + 1.P+ 1   IV

= ̂ _ r(p+o*. f1 - ">«+9+\V+> I l)
* -.. L \    p+j + i,p + i     1/

-(p+j)*,^      p + i+1;p+1        IVJ-0

for i ^ j by using (8).
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