TABLE ERRATA

342.-Zdeněk Kopal, Numerical Analysis, John Wiley \& Sons, Inc., New York, 1955 (second edition, 1961).
On p. 523 of the first edition of this book Professor Kopal acknowledges the table of Lowan, Davids, and Levenson [1] to be the source of his table of Abscissae and Weight Coefficients of the Gaussian Quadrature Formula. He reproduces the known errors [2] in the earlier table and introduces on p. 524 an additional error; namely, corresponding to $n=10$ the weight coefficient, H, given erroneously as 0.269260210927734 should read 0.269266719309996.

All these errors have been removed from the corresponding table in the second edition.

[^0]Olga K. Francis
Hypersonic Research Laboratory
Wright-Patterson Air Force Base, Ohio
343.-J. W. McClain, F. C. Schoenig, Jr. \& N. J. Palladino, Table of Bessel Functions to Argument 85, Engineering Research Bulletin B-85, The Pennsylvania State University, University Park, Pennsylvania, September 1962. [See RMT 17, Math. Comp. v. 18, 1964, p. 161.]
The final tabulated digit should be increased by a unit in the following cases:

$$
\begin{aligned}
& J_{0}(x) \text { for } x=2.4,5.5,14.9,46.3,52.0,58.9,74.6 \\
& J_{1}(x) \text { for } x=16.3,19.6,38.4,47.7,47.9,69.8,73.0 \\
& Y_{0}(x) \text { for } x=3.9 \\
& Y_{1}(x) \text { for } x=5.0 \\
& I_{1}(x) \text { for } x=19.5 \\
& K_{0}(x) \text { for } x=3.8
\end{aligned}
$$

The final digit should be decreased by a unit in the following cases:

$$
\begin{aligned}
& J_{0}(x) \text { for } x=27.5,56.8,65.2,74.7,80.9,84.5 ; \\
& J_{1}(x) \text { for } x=3.9,35.4,51.6,57.4,69.9 \\
& Y_{0}(x) \text { for } x=4.1,4.2,5.0,5.1,5.2 \\
& Y_{1}(x) \text { for } x=14.9 \\
& K_{0}(x) \text { for } x=15.5 ; \\
& K_{1}(x) \text { for } x=3.6,4.2,5.7,7.4,9.8
\end{aligned}
$$

More serious errors are the following:

	for	read
	2.533	2.529
$J_{0}(43.2)$	-3.377	-3.374
$Y_{0}(5.3)$	-3.405	-3.402
$Y_{0}(5.4)$	-3.399	-3.395
$Y_{0}(5.5)$	-3.361	-3.354
$Y_{0}(5.6)$	-3.290	7.282
$Y_{0}(5.7)$	7.915	4.919
$Y_{1}(5.2)$	4.448	1.013
$Y_{1}(5.3)$	1.004	-2.376
$Y_{1}(5.4)$	-2.389	-5.681
$Y_{1}(5.5)$	-5.698	-8.872
$Y_{1}(5.6)$	-8.897	

J. W. W.
344.-National Bureau of Standards, Tables of the Bivariate Normal Distribution Function and Related Functions, Applied Mathematics Series, No. 50, 1959, Washington 25, D.C. [See MTAC, v. 14, 1960, p. 293-295, RMT 55.]
The following differences of two or more units in the last figure of the tabular entries are noted. Only those values were checked for which $r=-0.60(-0.050)$ $-0.95(-0.01)-0.99$. They were recomputed to at least eight decimal places on a CDC-1604 digital computer, using the formulas given by D. B. Owen in "Tables for computing bivariate normal probabilities," Annals of Mathematical Statistics, Vol. 27, 1957, p. 1075-1090.

r	h	k	for	read
-0.60	0.7	0.0	0.0439466	0.0439468
	0.0	0.7	0.0439466	0.0439468
-0.60	0.7	0.2	0.0303662	0.0303660
-0.60	0.2 2.0	0.7 0.9	0.0303662	0.0303660
	0.9	2.0	0.0000516	0.0000518
-0.70	1.3	2.1	0.0000000	0.0000004
-0.95	0.5	0.0	0.0029965	0.0029967
-0.95	0.0 0.3	0.5 0.1	0.0029965	0.0029967
	0.1	0.3	0.0062076	0.0062078
-0.95	0.4	0.1	0.0030582	0.0030584
-0.95	0.1	0.4 0.2	0.0030582	0.0030584
	0.2	0.3	0.0030895	0.0030897

The following discrepancies in entries which should have been reflections of one another are also noted. The correct entries are designated by an asterisk.

r	h	k	entry
-.60	1.0	2.4	0.0000050
	2.4	1.0	0.0000049^{*}
-.65	0.7	1.8	0.0001209
-.65	1.8	0.7.	0.0001208^{*}
	0.8	1.8	0.0000814

r	h	k	entry
	1.8	0.8	0.0000813^{*}
-.65	0.5	1.9	0.0001638
	1.9	0.5	0.0001637^{*}
-.65	0.5	2.2	0.0000397
	2.2	0.5	0.0000396^{*}
-.65	0.7	2.5	0.0000035
	2.5	0.7	0.0000034^{*}
-.65	1.2	1.6	0.0000377^{*}
-.70	1.6	1.2	0.0000378^{*}
	1.3	2.1	0.0000000
-.98	2.1	1.3	0.0000004^{*}
	1.0	0.0	0.0000001
	0.0	1.0	0.0000000^{*}
			D. B. OWEN

Sandia Corporation
Albuquerque, New Mexico
345.-P. Rabinowitz \& G. Weiss, "Tables of Abscissas and Weights for Numerical Evaluation of Integrals of the Form $\int_{0}^{\infty} e^{-x} x^{n} f(x) d x$," Math. Comp., v. 13, 1959, p. 285-294.
The zeros and weights have been recomputed to 25 significant figures on an IBM 7030 system, using double-precision floating-point arithmetic, and the following terminal-digit unit errors have been found.

n	N	row	column	for	read
0	24	14	2	... 966(-9)	... 967(-9)
0	24	16	2	... 138(-12)	... 139(-12)
0	24	19	1	... 670(1)	... 671(1)
0	32	2	2	... 234(-1)	... 233(-1)
0	32	6	2	... 415(-2)	... 416(-2)
0	32	32	2	... 424(-48)	... 423(-48)
1	8	5	1	... 733(0)	... 734(0)
1	16	1	2	... 308(-2)	... 309(-2)
2	8	1	2	... 970(-1)	... 971(-1)
3	4	4	1	... 832(1)	... 833(1)
3	16	4	2	... 486(0)	... 487(0)
4	4	4	1	... 903(1)	... 904(1)
4	16	8	2	... 629(-1)	... 630(-1)
5	4	4	1	.. 417(1)	... 418(1)
5	8	2	1	... 781(0)	... 782(0)
5	12	4	1	... 539(0)	... 540(0)
5	16	3	2	... 158(1)	... 159(1)
5	16	15	2	... 559(-13)	... 560(-13)
5	16	16	1	... 663(1).	... 664(1)
					T. S. Shao T. C. Chen
velopment Laboratory ta Systems Division ernational Business Machines Corporation ughkeepsie, New York					

346.-A. H. Stroud \& Don Secrest, "Approximate Integration Formulas for Certain Spherically Symmetric Regions," Math. Comp., v. 17, 1963 p. 105-135.
The following errors have been noted on page 121 in Table 4, "Quadrature Formulas for the Integral $\int_{-\infty}^{\infty}|r|^{n-1} e^{-r^{2}} f(r) d r$."

n	h	row	column	for	read
3	8	1	1	$\ldots 187(-1)$	$\ldots 188(-1)$
3	16	1	2	$\ldots 806(-1)$	$\ldots 810(-1)$
3	16	2	2	$\ldots 719(-1)$	$\ldots 714(-1)$
3	16	3	2	$\ldots 853(-1)$	$\ldots 854(-1)$
3	16	4	2	$\ldots 162(-2)$	$\ldots 160(-2)$
3	16	6	2	$\ldots 012(-5)$	$\ldots 009(-5)$
3	16	7	2	$\ldots 067(-7)$	$\ldots 069(-7)$
3	16	8	2	$\ldots 564(-9)$	$\ldots 563(-9)$
					T. S. SHAO
					T. C. CHEN

NOTE

New Journal

The Information Processing Society of Japan has announced the annual publication, beginning in 1961, of an English-language compilation of selected papers from bimonthly Japanese journals devoted to information processing. The new journal is entitled Information Processing in Japan. The publisher's address is c/o JEIDA, 35 Nishikubo-tomoecho, Minato-ku, Tokyo.

The first issue contains the following papers:
T. Kasami: Systematic Codes Using Binary Shift Register Sequences
T. Kasami: A Systematic Code for Non-Independent Errors
J. Baba \& S. Hayashi: Evaluation of Errors at [sic] Numerical Integration of Ordinary Differential Equations
H. Takahashi \& Y. Ishibashi: A New Method for "Exact Calculation" by a Digital Computer (An Application of Modulo p Arithmetics)
T. Norimatsu \& T. Deido: Investigation of Error Accumulation in Runge-Kutta Integration Process by Circle Test
M. Takata: The Programmed Digital Differential Analyzer
M. Hosaka: On Block Operations Using Delay Lines
K. Fuchi \& H. Nishino: System Design of ETL MK-4B, an Input-Output Computer
S. Muroga, K. Takashima, I. Toda \& M. Yamada: The Magnetic Tape Device for the Parametron Digital Computer M-1
T. Deido, M. Ito \& T. Norimatsu: Quasi-Optimum Automatic Design for a Feedback Control System by Use of the Digital Computer
K. Fuchi \& H. Nishino: Automatic Data Processing in the Wiring of a Digital Computer
K. Mori: Simulation Experiment for Japanese Economy: 1953-1957.

[^0]: 1. A. N. Lowan, N. Davids and A. Levinson, "Table of the zeros of the Legendre polynomials of order 1-16 and the weight coefficients for Gauss' mechanical quadrature formula," Bull. Amer. Math. Soc. v. 48, 1942, p. 739-743.
 2. MTAC, v. 1, 1943, p. 56.
