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[3] ) for the exponents a — f and — \ and for N abscissas evaluates this last integral

exactly whenever the degree of P is ^2A — 1, and that is the best that can be

done. Thus our abscissas and coefficients are given by (since all the w¿<a) are less

than 1):

(3)     B0(a) = 0;       Bi(a) = §C>>,       XiM = (1 - yi'a))w(yi'a)Tm,    i ^ 1

where the Ci<a) and v¿(°° are the coefficients and abscissas of the Jacobi-Gauss formula.

Since the set of all functions of the form

(1 + xY
,   ai + fei x a2N-\ + b2N-i x

«o + jT—,—^ + • • • +
(1 + x2) (1 + x2)2N~l

is also that of all functions of the form ( 1 + x2)~2N~a+1Q(x) where Q is a polynomial

of degree 4N — 2 or lower, the conditions determining the above formula for any

a and N are the same as those determining Harper's formula for (using "k" and

"n" in the meaning given them in [1]) k = a + 2JV — 2, n = 2N. Thus we have

just re-derived Harper's formulas for even n.

It follows from known properties of Jacobi-Gauss quadrature that the coefficients

are non-negative ; and if / is continuous and a is chosen large enough to make g

bounded, it follows that the approximation obtained converges to the integral as N

increases.
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Generalized Trigonometric Functions

By F. D. Burgoyne

In an investigation into geometrical properties of the curves xn/an + yn/b" = 1,

use was made of the functions s„(m) where

«i= f"(l- tn)lln-ldt (0 ^ m ^ Pn)
Jo

pn= id- tnyin-idt = 2¡(-
Jo (xn,

and

\n/ J   /    \n

These functions may be called generalized trigonometric functions in view of

the fact that s2(u) = sin u. Further, s3(m) is the Dixon function smu, considered

by Dixon [1], Adams [2], and Laurent [3]. For n = 4 and 6 the functions are re-

lated to the Jacobian elliptic functions sn(u) with moduli 21/2/2, (2 — 31/2)1/2/2
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Table 1

3
4
5
6

1.76664
1.85407
1.90030
1.92762

Table 2

Values of generalized trigonometric functions

Si(u)

0.00000
0.05000
0.09998
0.14992
0.19973
0.24935
0.29866
0.34752
0.39578
0.44328
0.48983
0.53522
0.57926
0.62173
0.66245
0.70120
0.73783
0.77216
0.80407
0.83345
0.86023
0.88437
0.90587
0.92477
0.94113
0.95506
0.96669
0.97618
0.98371
0.98947
0.99370
0.99662
0.99846
0.99947
0.99990
1.00000

0
-2

4
13
19
31
45
60
76
95

116
135
157
175
197
212
230
242
253
260
264
264
260
254
243
230
214
196
177
153
131
108
83
58
33

-9

Si(u)

0.00000
0.05000
0.10000
0.14999
0.19995
0.24985
0.29964
0.34922
0.39847
0.44726
0.49539
0.54263
0.58872
0.63338
0.67628
0.71713
0.75561
0.79143
0.82436
0.85422
0.88088
0.90432
0.92457
0.94175
0.95604
0.96767
0.97692
0.98409
0.98947
0.99337
0.99608
0.99787
0.99896
0.99957
0.99986
0.99997
1.00000
1.00000

<53

0
0

-1

3
6

11
21
33
46
66
89

115
143
176
205
237
266
289
307
320
322
319
307
289
266
238
208
179
148
119
92
70
48
32
18
8

-3

0

s5(m)

0.00000
0.05000
0.10000
0.15000
0.19999
0.24997
0.29990
0.34976
0.39946
0.44890
0.49794
0.54637
0.59392
0.64029
0.68508
0.72788
0.76822
0.80568
0.83987
0.87046
0.89728
0.92027
0.93952
0.95524
0.96775
0.97743
0.98472
0.99004
0.99378
0.99632
0.99795
0.99895
0.99951
0.99980
0.99994
0.99998
1.00000
1.00000
1.00000

0
0
0

-1

1
5
7

16
26
40
01
88

118
158
199
246
288
327
360
377
383
374
353
321
283
239
197
158
120
91
63
44
27
15
10
2

— 2

0
0

Se(u)

0.00000
0.05000
0.10000
0.15000
0.20000
0.24999
0.29997
0.34992
0.39981
0.44956
0.49907
0.54820
0.59672
0.64431
0.69057
0.73501
0.77705
0.81609
0.85156
0.88298
0.91005
0.93267
0.95100
0.96538
0.97630
0.98431
0.98999
0.99388
0.99643
0.99803
0.99898
0.99952
0.99979
0.99992
0.99998
0.99999
1.00000
1.00000
1.00000
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respectively. (See Byrd and Friedman [4] p. 158.) General properties of these func-

tions are discussed in some detail by Shelupsky [5].

Tabulations of Si(u) are given in [2] to four decimal places for u = 0(P3/120)P3

and in [3] to ten decimal places for u = 0(0.001)0.103, but no direct tabulation of

sn(u) for n ^ 4 is known to the author. For this reason it was decided to tabulate

s„(m) for n = 4, 5, 6, and it was considered convenient to tabulate s3(m) also.

In Table 2 sn(u) is given to five decimal places for n = 3, 4, 5, 6 and u =

0(0.05)PK*, where Pn ^ Pn < Pn + 0.05. Second differences are given along-

side the tabular values, thus permitting interpolation at non-tabular points by

means of Everett's interpolation formula

U = (1 - P)/o + Ph + E2S02 + F28i

where

E2 - -p(p - l)(p - 2)/6

and

F2= (p+ l)p(p- l)/6.

Fourth differences are everywhere sufficiently small to ensure that the error due to

to interpolation will be less than 0.54 units in the fifth decimal place. The tabula-

tion was performed on a Mercury computer, a fourth-order Runge-Kutta process

being applied to the differential equation

Sn'(u)   =   {1  —  S„"(M)}1_1/n

starting from s„(0) = 0. In Table 1 we tabulate P„ for n = 3, 4, 5, 6. The

functions

cn(u) = {1 - snn(u)}lln

may be evaluated from these tables by means of the relation

C„(m)   =   Sn(Pn   —   U).
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