
The Evaluation and Estimation of the Coefficients
in the Chebyshev Series Expansion of a Function]

By David Elliott

1. Introduction. Suppose fix) is a function defined for —1 ^ x ^ 1, and T„ix)

is the Chebyshev polynomial of the first kind of degree n, defined by

(1) Tnix) = cos nö   with   x = cosö.

If fix) is of bounded variation in [—1, 1] then we have

(2) f(x) = E'anTnix),
n=0

where E' denotes a sum whose first term is halved. The coefficients an are given by

(3) an = - ff^Mâdx for   n = 0, 1,2, • • • .
*- J-i VI — X2

Recent investigations have considered the application of Chebyshev series to

finding numerical solutions to frequently occurring problems. The quadrature

problem has been considered by Clenshaw and Curtis [1] ; the numerical solution of

ordinary differential equations by Clenshaw [2], Fox [3] and Clenshaw and Norton

[4]; the numerical solution of Fredholm integral equations by the author [5] and

[6]; and finally a simple partial differential equation by the author [7]. In many of

these applications it is useful to be able to estimate the degree N of the polynomial

approximation to a given function fix), so that fix) is then represented to within

some prescribed accuracy. In order to do this some knowledge of the magnitude of

the coefficients an is required, in general for large values of n. An attempt has been

made to do this by the author [6], but the estimates given there are in general

fairly conservative. As an example, it is shown that if fix) is infinitely differentiable

in-láxál with \fn\x) | á Qn then

(4) | an | Ú     Qn
2»-ini

Although this gives a good estimate for functions like sin \irx and ex, the estimate

is poor for a function like fix) = 4/(5 + 4x). Then Qn = 22re+2n! and equation

(4) gives | a„ | ^ 2"+3 which although true is useless for computational purposes

since in fact,

0,71   =        3-2" f°r      n   -   0-

Equation (3) appears to be unsuited for estimating an for large values of n.

It is the purpose of this paper to consider an alternative definition for an in terms of

a contour integral. This definition can then be used to estimate an in cases when
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fiz) (z = x + iy) has poles in the complex plane, is an entire function, is regular

except at the points z = ± 1, and has a branch point in the complex plane. These

estimates are shown to be very good in many cases.

2. An Alternative Definition of an . Consider the function/(z) where z = x + iy.

By Cauchy's integral formula, we can represent fix) by

(5) fix) = ±[f-^
¿in Je z — :

fiz)dz

where C is any contour on and within which/(z) is regular. If, in the first instance,

the contour C is chosen so that it contains the interval — 1 ^ x ^ 1, then equation

(5) can be substituted into equation (3) to give

(6) On = 4".  Í fiz) { Í
ttH Jc [J-i

Tnix) dx

VI - xKz - x)

the inversion of the integrals being permitted under these conditions. Writing

x = cos 0, it can easily be shown that

/7n fl        Tnix) dx

Vl - xKz - x)      Vz2 - Hz ± Vz2 - 1)" '

where the sign is chosen so that | z ± \/z2 — 1 | > 1. Then,

(8) a   =1 [ f(z) dz
iri Jc V> _ 1(2 ± Vz2 -  1)"

Equation (8) is the starting point for all the results of this paper. The choice of the

contour C, and the evaluation of the contour integral will depend upon the behavior

of f(z).
As a first example, let us consider the case where /(z) has a simple pole at the

point z = Z\ . We first note that the equation | z ± \/z2 — 1 | = p, a constant

>1, represents an ellipse E„ with foci at the points z — ±1, and with semi-axes

aip), bip) given by

aip) = hip + P_1)    and    bip) = hip ~ P~')-

As the value of p varies, we obtain a system of confocal ellipses, the segment

-l^x^l corresponding to the degenerate case as p —> 1. As p increases, the semi-

axes of the ellipse increase beyond all bounds. Returning to the problem of a func-

tion/(z) with a pole at z = z\, suppose that this point lies on the ellipse EP1 . Then

for our contour C, we could choose any ellipse E„ where 1 < p < pi . However to

evaluate the integral we choose as the contour C, an ellipse Ep where p > pi,

described in the positive (counter-clockwise) direction together with a small circle

7i with centre at Z\, described in the negative direction and a pair of lines joining

two adjacent points on 71, to two adjacent points on Ep and not intersecting the

interval -l|i^l. Suppose/(z) has a residue rx at the point z = z\ . To evaluate

the contour integral, we let p —> =0 and the radius of the circle 71, tend to zero.

If fiz) is such that the integral around E„ tends to zero as p —> =0 for all n, we have

immediately that
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K } an       VzT^ïiz! ± VzT^lT '

valid for n ^ 0. It may happen however, that the integral around E„ only converges

for values of n greater than some n0. In this case equation (9) will only be valid for

n > n0. For a given n, the integral over E„ will tend to zero as p —» °o provided

raaxEp |/(z) | = oipn), where maxEp |/(z) | denotes the maximum value of |/(z) |

on the contour Ep. This will certainly be true if | /(«) | = o(|z|")as|z|—»  °o.

This analysis can be generalized immediately to the case where fiz) has a finite

number iM) of poles at the points zm for m = l(l)Af. If we now choose the

ellipse Ep to enclose all these poles, and if as before the integral over Ep tends to

zero as p —* °o, we have,

M

(10) an = -2E
=i Vz*.2 - 1(2» ± VzJ - 1)" '

where rm is the residue of fiz) at the point zm . Finally, if fiz) is a meromorphic

function with an infinity of simple poles, then if the ellipse E„ is chosen so that no

pole of fiz) lies on it, and the integral over Ep tends to zero as p —» =o through a

sequence of discrete values, we can let M tend to infinity in equation (10). The

formulation is useful in this case for estimating the coefficients an for large n,

since the contribution from each pole can then be found. An example of this estima-

tion for such a function is given in Section 3.

Returning to the function /(z) = 4/(5 + 4z), this has a simple pole at z\ =

— 5/4, with a residue of 1. Equation (9) gives immediately that an = ^ • ,

which is exact.

It should be noticed that this technique for evaluating the contour integral in

equation (8) is not valid for entire (integral) functions. In Section 5, we consider

a technique by which estimates may be obtained for the upper bound of \an\ for such

functions.

3. An Example of a Function With an Infinity of Poles. In [6], the author con-

sidered the function

(11) fiz) =
(/c2 + 1) - (fc2 - 1) cos tt(« + z)

where k and a are constants such that k > 1 and — 1 S a ^ 1. The problem to be

considered consists of finding, for a given value of k, that value of a for which the

Chebyshev expansion of fix) has the slowest convergence of the coefficients an ,

and estimating an in that case.

The function /(z) has simple poles at the points

zm = (2m — a) ± iß     for   m = 0, ±1, ±2, • • •

1               k  + 1
where ß = - arcosh 7^- . Thus the poles lie along two lines parallel to the real

■k k2 — 1

axis and at a distance ß from it. For a given m, each pair of poles corresponding to

±z/3, lies on an ellipse EPm where pm = | zm ± Vzm2 — 1 |. The residue of fiz) at



CHEBYSHEV  SERIES   EXPANSION   OF  A  FUNCTION 277

Table 1

estimated a2r actual a2.

2
3
4
5
6

+0.03031
-0.00743

+0.00183
-0.000445

+0.0001088

+0.03237
-0.00739

+0.00181
-0.000445

+0.0001088

zm is —i/2-ir when Im zm > 0, and +i/2ir when Im zm < 0, and is therefore inde-

pendent of m. Thus the largest contribution to aH comes from the poles at z =

— a ± iß. This, in turn, will be a maximum when pa is a minimum i.e. when a = 0.

Therefore, for a given n and k, the value of an will be a maximum when a = 0 i.e.

the most slowly convergent series for fix) will arise in this case.

Let us estimate the value of an for a = 0 by considering only the contribution

from the two poles at z = dtiß. From equation (10), with M — 2, we find

(12) a„ en
1 + (-1)"

i\Vß2 + ids + Vß2 + D" '

When n is odd, equation (12) gives immediately that an = 0; when n is even

(= 2r, say) we have,

2(-l)r
(j„   ^¿_:_:_Wß2 + i iß + Vß2 + i)2r '

The comparison of this estimate of a2r with its actual value in the case when k = 1.2

is given in Table 1. For quite small values of r, it can be seen that these estimates

are good.

Finally we can see qualitatively the effect of changing k. As k becomes large, ß

tends to zero and the poles approach the real axis. Thus a- for a given n becomes

larger as k increases, and a higher degree polynomial is required to approximate

fix) to the same accuracy.

4. A Pole of Order k. In Sections 2 and 3 we have considered only the case where

fiz) has simple poles at one or more points in the complex plane. Let us now con-

sider the case where fiz) has a pole of order k at z = z\ so that

(13) fiz) =
(z - zùk

where A-k is constant. If we write

(14) giz) =
1

Vz2 - 1 (z ± Vz2 - I)"

then from equation (8) we find on using the same limiting process for the contour

C, that

an = —2 X  (residue of/(z)gr(z), at z = Zi),

from which equations (13) and ( 14 ) give
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(15) an =
2A-k

(/c - 1)!

„(fc-i)
izi).

The problem of determining a„ is thus reduced to finding an explicit expression for

the ik — l)st derivative of giz). In order to do this we distinguish four cases, and

will first consider the case when Re zi > 1.

When Re z > 1, the correct choice of sign in giz) is the positive one in order that

| z ± Vz2 — 1 I should be > 1. Now Erdélyi et al. [8, p. 240] gives

(16) giz) =
1

Vz2 - 1 (z + Vz2 - l)5= -I "",Mdl

provided Re z >  1, where /„(i) is the modified Bessel function of order n. Dif-

ferentiating equation (16), (fc — 1) times with respect to z, gives

gik~1}iz) = (-I)*"1 f   tk~l e~H hit)
Jo

Again, from Erdélyi [8, p. 196], we find

dt.

(17) 9
(k-l) (_l)*-'(TO + fe_l)¡ ( z \

{Z) iz2 - Dk'2        - MvP^T/

valid for bH and k S: 1, where Pk-i denotes the associated Legendre function of

the first kind. Combining equations (15) and (17) we obtain the required result

when Re Zi > 1,

(18)
2(-l)*(n + fc- l)!p_

an  —   —n-- . ■ ,—;-tttt^- ik -i (-7±=)
Wzi2 - 1/ik - l)!(zi2 - l)k'2

An asymptotic form of an can be given for large n. For example, Hobson [9, p. 308]

gives

(19)

which is valid provided

(20)

res (-===) - i (-»_Y [i + o (1)1
\Vzi2 - 1/       n\ \Zl + Vzi2 - 1/   L W_

Zl

Vz
- 1 < 2.

'Zi" — 1

Thus, subject to the condition on zi given by equation (20), we have for large n,

(21) an ^i
2(-lf in + fc- 1)! A-k

(Rezj > I]
(Jb- 1)!(Z!2- l)*/2n!(zi + V¿r^n:)'

When k — 1, this asymptotic form for a~ is exact for all n. When k = 2, we have

that an is given explicitly by

2A-2
a„ =

(Z!2   -   1)   (ZX+ VZI2   -   l)

whereas equation (21) gives in this case

2A_2

=T)- [n+vzhi]

[n + l]
iz,2 - 1) (Zl + VzT^T)"

which is quite a good approximation for values of Zi not too close to z = 1.
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We can proceed in a similar fashion when Re Zi < — 1, and we find

(99s -       2i-l)n+kjn + k-l)lA-k      „  /       zi_\

(22) an       (fc-i)!(zi2-i^2     Pk-1 WlT^i) '

which agrees with a result previously given by Wimp [10] when zi is on the negative

real axis such z\ < —1.

When | Re zi |   á   1, we again consider two cases depending upon whether

Im z > 0 or < 0. First let us consider the case when Im z > 0. Define f by

(23) z = Ce™12

so that Re f > 0. In terms of f, giz) is given by

-(?i+l)tV/2

giz) =
Vr2 + i (f + Vf2 + i)n

the correct sign having been chosen, and from Erdélyi, et al. [2, p. 240] we have

(24) giz) =e-<"+^2 f e-t< jn{t) dt.
Jo

This is valid for n S; 0, and J„it) denotes the Bessel function of the first kind of

order n. Differentiating equation (24), (/c — 1) times with respect to z and using

the result given by Erdélyi et al. [2, p. 182] we find

(25) g      iz)-(z2 - l)kn-P" \J7=L) '

We can proceed similarly to find an analogous result for <7(*-1)(z) when Im z < 0,

by writing z = fe~ "   . From these results we find

,9n _       2j-\)ke^nl2)ik + n-l)\A^k p_„  /      zt      \

(26)     a- " ~   (/c-DKzi2-!)^2   - Pm Vv^r^í^

where the (       . .      1 sign is chosen when Im z <      _ > respectively.

Equations (18), (22) and (26) give the required values of the coefficient o„

A-k
in the Chebyshev series expansion of the function fix) = -,-yk for all possible

(3- — Zi)

values of z\ .

5. Entire Functions. So far we have considered only functions with poles in the

complex plane. In this section we consider entire functions. We again take as our

starting point equation (8), and choose as the contour C, the ellipse Ep. Consider

the transformation

(27) s=_(. + 1/Ï).

This maps the exterior of the ellipse E„ in the z-plane onto the exterior of a circle

Cp, of radius p and centre the origin in the £-plane. With this transformation, we

find,
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If the Laurent expansion of / :m is known, and in particular if the coefficient

of £" is an , then we have immediately a„ = 2a„ . However, it is not likely in general

that a„ will be known. We can then estimate an upper bound for \an\ quite simply.

Suppose M(p) denotes the maximum values of | / | on the circle C„ (or equivalently

the ellipse Ep), then equation (28) gives immediately

(29) l«.l_2-^.
P

By varying p, we find that value p* say, for which 2M(p)/p" is a minimum. We

then have

As an example, let us consider the function ex. Now ez attains its maximum

modulus on the ellipse Ep at z = a, so we have M(p) = eai2)(p+'' \ For a given n,

the quantity M ip)/pn attains a minimum value at p* = n + y/n2 + 1.

Thus

Wô'+i
(30) | a»|  -

(n + Vw2 + 1)"

for large values of n. It is of interest to compare this value with that obtained

from equation (4), which in this case gives | a» | _S e/2n~ nl. This is a better approxi-

mation to an than that given by equation (30). Since ex = 2E»-o Inil)T„ix),

we have for large n, a» c__ -—-—•. However, the use of equation (4) does need a
2n ln\

knowledge of the nth derivative oí fix) and this is not in general as readily available

as the value of fiz) at points in the complex plane.

6. Functions Regular Except at z = ±1. We are not yet in a position to estimate

the coefficients in the expansion of a function like fix) = Vl — x which is regular

everywhere except at the point x = 1. In this section we shall derive such a result.

The corresponding result for a function which is not regular at x = — 1 will then be

stated without proof.

Let us suppose that/(„) = (1 — x)*gix), where <p is not an integer and gix)

is regular at a; = 1. Since fix) has, in particular, to be bounded at x — 1, we have

<p > 0. In equation (8), we shall now choose as the contour C, the ellipse E„ de-

scribed in the positive direction, a small circle 7 of radius e, centre +1 described

negatively, and two line segments AB and CD where AB is just below and parallel

to the real axis, the point A being on the ellipse E„, the point B on the circle 7;

and CD is just above and parallel to the real axis, the point C being on the circle

7, D on the ellipse Ep. The function /(z) is regular within such a contour. We

again assume that fiz) is such that the integral over E„ will tend to zero as p be-

comes large. Since <p > 0, the integral around 7 will tend to zero as e —> 0. Thus in

the limit as p —+ °° and e —> 0, the only contributions to an will come from the

integrals along AB and CD. Taking/(z)  =  (1 — z)*giz), we find that the two
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integrals along AB and CD combine to give

2 sin ir<j> y      fa | x — 1 |* gix) dx,_,v                                    2sin7r0v      f°
(31) an =-"hm /

7T <z-»oo   •'l aA2 - i ix + Vx2 - i)""

Putting „ = cosh 0, if a = cosh  0 then

(32) a. - - 2 Sin ** lim  f ° (2 sinh2 |Y g (cosh 0) e""" dö.
IT &-,x  Jo      \ 2/

In order to approximate this integral, we assume that n is chosen so large, and

gix) is such that the main contribution to the integral comes from the values close

to 0 = 0. Replacing sinh -by- and gr(„)bygf(l)we obtain
— —

an ~ -21-* g(1) -si"(^) r Ö2V"< de.
7T Jo

Writing t = n0, we find

(33) an =_ -2W^2r(^ r(2, + 1).

This is the required result for this case. As an example, consider again the function

fix) = VI — x. Now,

(34) VT=~x = -^ E' ,  ,*    ,  Tn(x).
it    n=o 4n¿ — 1

From equation (33) we have on putting <p = § and 0(1) = 1,

V2
a~- _____

irn2

which compares very well with the exact result an =  -\/-/i()i2 — \).

A similar result can be obtained for the point z = — 1. li fix) = (1 + x^hix)

where hix) is regular x = — 1, then

(35) an __ -2-^H_^___i_ (_im2, + D.

These two results can be superposed if necessary, and as an example let us con-

sider the estimate of an for the function /(„) = \/l — x2. The function /(z) =

(1 — z)xn is regular everywhere except at z = ±1. Combining the results of equa-

tions (33) and (35) we find,

a2n ca-    and    a_+i = 0,
irn2

which compares favorably with the actual values a2n = —1/irin2 — \) and a2n+\ = 0.

7. Branch Point on Real Axis. The last case we shall consider is that where

fiz) has a branch point at z = c on the real axis where c > 1. As an example of such

a function we have fix) = V2 — x, where there is a branch point oí fiz) at z = 2.
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Table 2

n estimated an actual a„

1
5
6
7

-0.000497
-0.000096
-0.000019
-0.000004
-0.000001

-0.000536
-0.000100
-0.000020
-0.000004
-0.000001

Suppose that we have fiz) = (c — z)*giz) where <p can be any number, not an

integer, and giz) is regular atz = c.The contour C is chosen inaway similarto that

for the case when /(z) has a branch point at z = 1 but with the circle 7 enclosing

the point z = c. In order that the integral around 7 should tend to zero when the

radius tends to zero, we must have <p > — 1. Assuming also that the integral around

the ellipse Ep tends to zero as p tends to infinity, we find on combining the contribu-

tions to the integral from the lines AB and CD that

(36) an =
2 sin ir<p ,.

lim /   —^
a->_  J C   -\J X

x — c I* gix) dx

As before, writing x = cosh 0, then if c

l(x + Vz2 - 1)"

cosh a we have

an =
2 sin ircb

im  /
0   .  ,6 + a   .  ,6 -
2 sinh —-— sinh ——

— —

1*
-] ¡?(cosh 6)e ne de.

Again, considering that n is chosen and g (cosh 0) is such that the major contribu-

tion to the integral comes from around 0 = a, we find, assuming that (0 — a) is

small,

2 sin 7r0(sinh afgic)
a„

/•oo

/   {e _)V" de.

On making the substitution ¿ = n(0 — a), we have the required result,

2 sin tt4.(c2 - l)*/2<5r(c)r(4> + 1)
(37) an ^

*n*+\c + Vc2 - 1)"

A comparison of this estimated value of an with the actual value for the function

V2 — x is given in Table 2.

Once again, the estimated values obtained from equation (37) compare very well

with the actual values.

Proceeding as above we can derive a similar result for the case when /(z) has a

branch point on the negative real axis at z — —c,ic> 1). If /(z) = (c + z)*hiz)

where hiz) is regular at z = — c, then for \p > — 1, we find for large n,

,Q8x 2 sin mpjc2 - l)*ft(-c)(-l)nIX> + 1)

irn     (c + Vc2 — 1)

8. Extension to Expansions in Jacobi Polynomials. The foregoing analysis can

be generalized to the case where fix), defined for — 1 î£ x ^ 1, is expanded in a

series of Jacobi polynomials Pna'ß ix), see Szegö  [11]. Suppose
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fix) = J2anPna'ß)ix)
7>=0

then

(39) a, = r|1j [ wix)Pn"-ß\x)fix) dx,

where [11, equation (4.3.3)],

(„.„) = 2(a+g+1)r(n + a + l)r(n + ß + 1)

(2n + a + /3 + l)r(n + l)r(» + a + /3 + 1)

and

wix) = (1 - a;)a(l + a;)*.

Substituting for fix) from equation (5) into equation (39) we find

1 f  ,, J f1 wix)Pn'a'ß)ix)   . \ ,
°" = 2ln%^ If(z) \L        z-x        dX) ̂

From [11, equation (4.61.4)] we have immediately

(40) an = 2ir¿M) ¡cfo)'2(fi - lViz + DU(a'"(z) dz.

Suppose now that n is large; then a suitable asymptotic form for Q„(a,ß)iz) is given

by (see Barrett, [12]),

2(2 - l)a(z + l)ßQn(a'ß)iz) ~ y|/ï

(41)
v     ' 2ia+ß+1)l2(z — i)W2H"4V,   i   -^yira-a/«

(z ± -/z2"^!)^^"^"

where the sign in (z ± Vz2 — l) is chosen so that | z ± Vz2 — 1 | > 1. This

representation of Qn"'ß)iz) is valid in the plane cut along [ — 1, 1] with the neighbor-

hood of the two points z = ±1 removed. Substituting equation (41) into (40) we

have the required generalization of equation (8),

fiz)iz - l)«"2)-(1/4)(_ + i)W»-w«
<«> --_^^-2<a+"1,/2/;

(z ± v/zT^l)'^+i(a+ß+1,
dz.

where C is chosen so that fiz) is regular within C. An analysis similar to that given

in Sections 2-7, can be made on this equation.

9. Conclusion. In this paper we have considered estimates for the coefficients

in the Chebyshev series expansion of a function fix). The form of the estimate

depends upon whether/(z) has poles, or has a branch point on the real axis includ-

ing the end points z = ±1, or whether fix) is an entire function. The results may

be superposed. Consider for example the function fix) = eV(l + x2). This func-

tion has simple poles at z = ±¿, but the integral in equation (8) does not tend to

zero around the ellipse E„ as p —» <». Nevertheless an estimate to the coefficients \a„\

can be found in this case by combining the results of Section 2 with the technique for
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entire functions as described in Section 5. Combining the results obtained in this

way, estimates for the coefficients an for large n may be obtained with considerable

accuracy for a large variety of functions.
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