
Triangle Formulas in the Complex Plane

By Philip J. Davis

1. Introduction. In the course of studying "simple" quadratures, the following

identity was derived. Let T designate a triangle lying in the complex z plane whose

vertices are z\, z2, z3. If A designates the area of T and if / is any function that is

regular in the closure of T, then

±f{f>(z)dxdy M) + /(*)

(i)
(Zl  —  Z2)(Zi  —  Z3) (Z2  —  Zi)(z2  —  Z3)

+
/(«»)

(z3 — Zi)(z3 — z2)

This formula can be put in the alternative form

(l')    2J jj S"iz) dx dy = /(zx, z2, z3) =

1 1

Zl z2 z3

îizù    /(z2)    /(z3)

1    1 1

Zl        Z2        Z3
2 1 2

Zl        Z2        Z3

where /(zi, z2, z3) designates the second divided difference of/ with respect to

Zi, z2, z3. It may also be written as

{Zl-Zi)iZi-^fff"(z)dxdy,H") Rif; zi)
2A

where R(f;zi) is the remainder at Zi due to linear interpolation to/(z) at z2 and z3.

This formula was subsequently found in Approximation: Theory and Practice

by I. J. Schoenberg (Notes on a series of lectures at Stanford University, 1955)

and correspondence with Schoenberg revealed that it was obtained by him and T.

Motzkin in 1951-1952 during one of their numerous luncheon conversations. In

the set of notes just referred to, the formula was derived by applying the Hermite-

Genocchi integral representation for divided differences, and this approach suggests

certain generalizations to nth order divided differences.

The object of the present paper is to publicize this interesting formula, to give

an alternate proof of it, and to derive a number of consequences and results related

to the alternate approach.

2. Alternate Derivation of the Motzkin-Schoenberg Formula. We begin by

recalling several elementary formulas. If zi and z2 are two distinct points in the

complex plane, then the equation of the straight line passing through them is

(2)

z      z      1

Zl      Zl      1

z2     z2     1

= 0,
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or

(2')
Vi   —   22/ \

Zl Z2   —   Z2 Zl

Zl   —   Z2

Formula (2 ) is the simplest example of a "Schwarz reflection function" for

an analytic arc, which expresses the equation of the arc in the form

(3) z = S(z).

(See, e.g., Davis and Pollak [3, p. 6-7, 23-27].)

If zi, z2, z3 are three noncollinear points, then the directed or signed area

A(zi, z2, z3) of the triangle with these vertices is given by

(4) A(zi ,z2,z3) = -

Zl      Zi       1

z2     z2     1

z3     z3     1

(See, e.g., Deaux [4, p. 59-60].)

Green's Theorem in the plane can, with the help of the Cauchy-Riemann equa-

tions, be put in the form

(5) // /'(z) dxdy = - /   fdz;       dz = dx — idy.

This is a special case of the more general

(5') jj f'(z)gjz) dx dy =%-j   f(z)gjz) dz.

B

In formulas (5) and (5 ) we assume, for simplicity, that the region B has a

boundary dB that is composed of a finite number of analytic arcs, and that the

functions/(z) and g(z) are regular in the closure of B.

Let the vertices of the triangle T in counter-clockwise order be Zi, z2, z3. From

(5) we obtain

^jfs"iz)dxdy= J   S'(z)dz

(6)

=  f '/'(z) dz+   [ '/'(z) dz + HS'iz) dz.
Jz-y Jz2 J ZZ

The three contour integrals are taken along the sides of the triangle 7\ , T2, T3

respectively. Now along Ti we have from (2'),

(7)
5  —    À    -, _L   R A     —   Zl ~ ^ K Zl Z2 —  Z2 Zi
z = Ai z + Bi,    Ai = -       -,    Bx =

Zl  —  Z2 Zl — z2

Therefore along Ti, dz = Aidz. Hence,

(8) iTi)  HS'iz) dz =   A1 CS'iz) dz = Ai(Sizi) -/(z2)).



TRIANGLE   FORMULAS   IN  THE   COMPLEX   PLANE 571

(9)

Similar formulas hold for T2 and T3 and therefore,

lJ¡S"(z)dxdy= Ai(S(zi) -Siz2)) + A2(S(z2) -/(«,)) + .43(/(z3) -/(zx))
T

= (A3 - Ai)S(zi) + (Ai - A2)f(z2) + (A2 - A3)S(z3).

From (7) and (4),

A3 - .Ai
Z3 — Zi        Z\ — z2

(10)
Z3 — Zi       Zi — Z2        (Zi — Z2) (Zi — z3)

4     A(zi,z2,z3) 4A

Zi     Zl     1

z2   z2    1

z3   z3    1

i (zi — z2) (zi — z3)      i(zi — z2) (Zi — z3) '

Similar formulas hold for Ai — A2 and A2 — A3, and their insertion in (9)

leads to ( 1 ).

3. Some Applications and Extensions. Write/(z) = (z — zi)(z — z2)(z — z3).

Then,/"(z) = 6z — 2Si where Si = Zi + z2 + z3. Hence, from (1),

Therefore,

¿ H (6z - 2Si) dx dy = 0.

JJ zdxdy = j JJ dx dy = -±—

or

(11) - JJ zdxdy = - (zi + z2 + z3),

the formula for the center of gravity of a triangle.

By taking the real or imaginary parts of (1), we can obtain the integrals of

harmonic functions over triangles. For example, the product of inertia can be

obtained in this way. We have

// xy dxdy = - Im // z dxdy = — Im //  (z4)" dx dy

= 12Im

1 1 1

Zl z2 z3
4 4 4

Zl Z2 Z3

1 1

Zl Z2 23
2 2 2

Zl Z2 Z.3

= Ï2 Im ^Zl ~^~ Zi "*" Z^ ~ ^Zl Zï + 2l ^ + Zl z^ ■

Hence, if the center of gravity of T is at the origin : zx + z2 + z3 = 0, we obtain

the neat formula
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(12)      Product of inertia of T =  /   xy dxdy = — ̂ — Im(zi z2 + zi z3 + z2 z3).

T

Formula ( 1 ) may be extended to polygons.

Lemma. Let Zi ,z2, ■ ■ ■ , zn designate the vertices oS a polygon P. Then we can find

constants oi , • • • , a„ depending upon z\, ■ ■ ■ , zn but independent of f, such that for

all f regular in the closure of P,

(13) JJ f"(z)dxdy= ¿ <*/(*).

If r i; n, and zn+i, zn+2, ■ ■ ■ ,zr are additional points distinct from z\, z2, ■ ■ ■ ,z„

and if there are constants 6i, • • • ,br which depend only upon z\, • • ■ , zr such that

(14) JJ f"(z) dxdy = Y, hf(zi)

for all f regular in the closure of P, then

(15) h = ai, • • • , bn = an ,    and   bn+i = bn+2 = br = 0.

Proof. The polygon P may be decomposed into a finite number of triangles

Ti, T2, • • • , Ts such that vertices of these triangles are among the points Z\, • • • ,

Zn . Write

JJ f"dxdy= ¿ff f" dxdy

and apply (1) to each Ti. This proves (13).

From (14) and (13) we have

¿ (ai - bi)f(zi) + ¿ bif(zi) = 0,
i=\ ¿=7i4-l

so that with an obvious notation, ¿J¡-i c{f(zi) = 0 for all/ regular in the closure of

P. In particular, for/(z) = z", q = 0, 1, • ■ • , r — 1, we have 23<-i CiZ* = 0. Since

the Vandermonde determinant | z¿5 | 9¿ 0, it follows that c, = 0, i = 1, 2, • • • , r

and (15) follows.

What we are asserting in (15) is, essentially, the linear independence of the

functionals L,-(/) = /(z¿), i = 1,2, ■ ■ ■ , r.

We now give an explicit representation of the formula (13).

Theorem. With the notation as in the lemma,

fff"(z)dxdy

(16)

0     f(zi)   f(z2)

Mo 1 1

n—1 n—1
Mn-1      Zl Zn

f(Zn)

1

1 1

Z-l

n—l n—1
Zl Z2 Zn
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where

ßk =  if (zky dx dy = k(k - 1) ¡i zk~2 dx dy,       k ^ 2,

(i7) r

Mo = Ml = 0.

Proof. This comes from inserting/ = 1,/ = z, ■ • • ,/ = z"~ in (13) and solving

the resulting system.

A second representation is the following. For simplicity, we formulate it for a

convex polygon.

Theorem. Let Zi, z2, - • • , zn designate the vertices in counter-clockwise order of

a convex polygon P. Write z0 = z» and zn+i = zx. Then, for all f(z) regular in the

closure of P,

p

Proof. For fixed i, the polygon P may be decomposed into the triangle 7\- whose

vertices are 2»_i, z,, and z,-+i plus a polygon P¿ whose vertices are all the z's save

Zi. Hence, by (13) and (1),

(19) ¡ff"iz)dxdy = J^'V^f .M) +    i    djf(Z]).
v      ' JJ (Zi — Zi-i) (Zi — Zi+i) i—l;i*i

p

In view of the lemma, a similar coefficient attaches to each vertex.

Corollary.

(20) ¿(zMV\72'Zii )-°'¿-i (z» — Zi_i; [Zi — z,+ij

(21) ¿,   ^(«".*.««*)     „,o,
»=1 (Zi — Zi_i)  (z¿ — Z.+i)

/f>o\ Va        ^-(.Zi—i , Z,- , Zi+i) 2 j. „
(22) 2^ ?-h^-\ 0<  = areaoS P.

<=1 (Zf — Zi_iJ (Z¿ — Z,:+iJ

ProoS. Insert/(z) s \J(z) = z,/(z) =- z2 in (18).

Corollary. Let the point z   lie inside the convex polygon P whose vertices are

zi, z2, ■ ■ ■ , zn ■ Then,

(23) i . /(*»«*;*">      = o.
¿_1 (z* - Zi) (z* - Zi+i)

ProoS- Decompose P into triangles whose vertices are z¿, z*, zi+i. In view of

(1), \]pS" dx dy can be expressed as a fixed linear combination of /(zi), • • • ,S(zn),

Siz*).
In this linear combination, the coefficient of /(z*) will be, according to (1),

•y       2A(Zi,Z*,Zi+i)

i=l (Z* - Zi) (z* — Zi+i) '

But by (13), ///•/" dxdy can be expressed as a fixed linear combination of/(zx),
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' ' ' ,S(zn). Hence, by the lemma, the coefficient of f(z*) must vanish and this

leads to (23).

It is interesting to notice, that in the case n = 3, equation (23) is equivalent to

ioa\ „* - , A(z* ,z2,z3) A(zi,z* ,z3) A(zi,z2,z*)
(.24) Z     = Zi —r--r-   + Z2 —r--r-   + Z3 -T-.-r  .

A(zi,z2,z3) A(zi,z2,z3) A(zi,z2,z3)

The coefficients of Zi, z2, z3 in this formulae are the barycentric coordinates of

z* with respect to Zi, z2, z3. (See e.g., Deaux [4].)

4. Further Developments. In order to obtain complex formulas for integrals

of the type $$Tg(x,y) dx dy where g is an analytic function of the two real varia-

bles x and y, we can write

,y)=g(±(z + z),±-.(z-z))gix,y) =

Expansions of g in power series now suggest that one should study integrals of the

form J/r z"S(z) dx dy. We begin with n = 1.

Theorem. Set z0 = z3 and z4 = Zi. Then iSSiz) is regular in the closure o/ T,

JL ff <r (,) dx dy = 2± H« K*-*y) (*-*-i)l f(z{)
,25s 2A JJ ¿-i     (zi — z,_i)2 (Zi — zi+i)2

3

+ Z) 7-r?-ñ f'izi)-
»-1 {Zi — Zi-i) (Zi — Zi+i)

ProoS- Designate the sides of T, properly oriented, by Ti, T2, T3. By (5 ) we

have

\\zS'"iz)dxdy=l-\ zS"iz)dz.

T

Work on Ti as a prototype :

i f   zS"iz) dz = \ r S"iz) Ui z + Bi) Ai dz
¿ JTí ¿ Jzi

= l- \^S'iz)Ai(Ai z + Bt)f - Ai2 £ S'iz) dz^

= \ Ui hS'iz,) - Ax ziS'izi)] + | Ai2 \Sizi) - fit,)].

The first bracket holds since on Tx, z = Axz + B. Hence, ¿i = Aizx + Bi,

z2 = Aiz2 + B2.

Simüarly,

| f zS"(z) dz=l- [A2z3S'(z3) - A2z2S'(z2)} + l-A22 [/(z2) -/(«,)]

and a corresponding expression holds for the integral along T3. Forming the sum

along the three sides, and picking out, for example, the coefficients of /(z2) and

f(z2), we have as the contribution from the point z2 :
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l- (Ai - At) [z2/'(z2) + Ut + M) /(z2)].

From (10),

4A
Ai - A2 =

i(z2 — Zi) (z2 — z3)

Also,

/OA\ Á    ,    ,        z2 — z3zi — z2      2Re [(z2 — zi) (z2 — z3)]
(¿O) A2 + Ai =   ■- -\-=-r- .

Z2 — Z3 Zi — Z2 (Z2 — ZS) (Z2 — Zi)

Formula (25) now follows.

As an application of this formula, select/(z) = z(z — Zi)(z — z2)(z — z%).

Then/"'(z) = 24z - 6&, Si = Zi + z2 + z3. Now,/'(zi) = zx(zi - z2)(zi - z3),

etc., hence from (25),

(27) Kl li Z^Z ~ 6,Sl'> dx dy = llZx "*" Z2Z2 "*" Z*Z3 '

T

Inserting (11) in (27), we obtain a complex formula for the moment of inertia of

a triangle about an axis perpendicular to the triangle and passing through the

origin :

(28) JJ  | z |2 dx dy = — [ | zi |2 + | z212 + | z3 |2 + | Zi + z2 + z3 |2].

T

If the center of gravity of the triangle is at the origin, we obtain the neat formula

(28') Jj \ z \2 dx dy = — [\ zi \2 + \ z2\2 + \ z312].

T

The generalization of this theorem is as follows:

Theorem. Given a triangle T we can find constants üíj depending upon zi, z2, z3

such that

(29)
[Í zmSlm+2)iz)dxdy=   Ha.jS^izj)

JJ ¿=0 j"»l

Sor all S regular in the closure öS T.

ProoS- Use (5) and proceed as before.

Formula (29) may be regarded as a kind of complex three point Taylor expres-

sion with exact remainder.

5. Complex Integration over Lunes. Designate the common part of the two

circles

Ci". | Z — ai |   = 1 + a2) _
> o,  i = V-i

C2: | z + oí \¿ = 1 + </'

byL.
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These circles both pass through z = ±1 and their centers are at z = ai and

z = —ai respectively. On Li, the lower boundary of L, we have

(30) z - Si(z) = L+f! - „\
Z — al

while on 7^2, the upper boundary, we have

(30') z = S2(z) = ?-±A + «.
Z + al

If /(z) is regular in the closure of L, then by (5 ) we have

(31) I JJ Siz)zn dx dy =    JJ    F(z)zndz,
L Li + i-2

where F(z) is an indefinite integral of/(z). Now,

[   F(z)zndz = [   F(z)Sin(z)Si'(z)dz
J L. Jl,

^ (  Siz)Si+1iz) dz.
+1

= F(z) Sr
n+ 1 n +

In view of the analyticity of / and Si, we may take this last integral along the

x axis, so that

(n + 1) (   F(z)t dz = F(l)Sin+1(D - P(-DSr+1(-D

r+i
- J    Six)Sin+\x) dx.

Similarly,

(n + 1) f   F(z)zndz - F(-l)S2n+1(-l) - F(l)S2n+1(l)
J L2

-  ( ' Six)S2n+\x) dx.
J+i

Since Si(l) = 8,(1) = 1, Si(-l) = S2(-l) = -1,

(32) f JJ fiz)zn dx dy = -i_ ¡^ Six)iS2n+\x) - Si"+1(*)) dx.

This reduces the complex double integral to a single real integral of the usual

sort. The particular values n = 0 and n = 1 lead to the formulas

(33) JJ /(*)<& d2/ = * J_x  fi*) ¿r+p dx>

(34) JJ zfiz) dx dy = a(l + a2) f    Six)

+

™(1 - x2)

(x2 + a2)2
dx.
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In a paper that follows, application will be made of equations (1) and (33) to

"simple" quadratures.

The author wishes to thank Richard DeMar for a number of useful discussions.

Added in proof. The author wishes to thank Dr. Matthew P. Gaffney for calling

my attention to Helmut Grunsky, "Eine Funktionentheoretische Integralformel,"

Math. Z. v. 63, 1955, p. 320-323, where formula (1) will also be found.
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