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is compared with En(x), En^i(x), and En(x) + en (x). Even at x = 1 the im-

proved approximation has only about one per cent error compared to forty per cent

for En(x).

Accuracy of Asymptotic Approximations
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In this paper we shall give a one-step method for the numerical solution of sec-

ond order linear ordinary differential equations based on Hermitian interpolation

and the Lobatto four-point quadrature formula. One-step methods based on quadra-

ture were introduced into the literature by Hammer and Hollingsworth [3]; for sub-

sequent work see Morrison and Stoller [7], and Henrici [5].

Throughout our discussion we shall assume that the functions N(x),f(x), g(x)

of the differential equation y" = N(x)y + f(x)y 4- g(x) are sufficiently differ-

entiable to ensure that the derivations we give are valid in any context in which

they are used.

In order to simplify somewhat the discussion of the method under consideration

we shall first treat the differential equation y" = f(x)y + g(x), y(xo) = yo, y'(xo) =

i/o • The necessary modifications for the general second order differential equation

y" = N(x)y  -\- f(x)y + g(x) will be given later.

After integrating the above differential equation from x0 to Xi = x0 + h (h > 0),

we obtain the system of integral equations :

(1)      y'(x0 + h) = y'(xo) +   ( °     [f(r)y(r) + g(r)] dr,
Jxn
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JpXQ+h
lf(r)y(r) + g(r)](xo + h - r) dr.

We shall approximate the above integrals by the Lobatto four-point quadrature

formulae on the interval [x0, xo + h], cf. [6],

(3) F(x)dx = ^Y,WkF(rk) + Ri.
»Xf¡+h

Jx0

Here Wi = Wt = |, W, = W3 = f.

ti = a;0,    t2 = a;0 + (5 — -\/5)V10,    t3 = a.-0 + (5 + Vo)VIO,

-4A7FVI<|)
t4 = a;o + Ä,    Ri

3-27-15750 '

where xo < f < xo + Ä.

In order to shorten the succeeding calculations we denote (5 — -\/5)/10 by r,

(5 + V5)/10 by s.
We have, approximating the integrals of (1) and (2) by the above quadrature

formula,

(4)     y'(xo + h) - 2/'U) + J E Wk[f(rk)y(rk) + g(rk)] + To,
¿ k=i

y(xo + h) = 2/(a;0) + %'(a;o)

+ 5 è TP*U + h - rk)[f(rk)y(rk) + g(rk)\ + f, .

( To and To will be discussed in detail later. )

We must know y(r2), y(r3) in order to apply the above formulae as a numerical

method. We do this as follows. In addition to y(xo), y'(x0), y"(x0), we suppose we

know y(xo + h), y (x0 + h), y"(xo + h) ; we fit this data to a Hermite interpolating

polynomial, cf. [6]:

y(x0 + th) = y(xo)[l - t3 + 3í3(í - 1) - 6t3(t - l)2]

+ y'(xo)[t - t3 + 2t3(t - 1) - 3t3(t - l)2]h

+ y"(x0)[t2 - 2f + t - t\t - l)2]Ä2/2

(6) + y(x1)[t3 - 3t3(t - 1) + 6t3(t - l)2]

+ y'(x1) [t3(t - 1) - 3t3(t - l)2]h

+ y"(x1)[t3(t - l)V/2 + /*(&) t3(t - l)V/720,

where xo < ^i < x0 + h, 0 ^ t ^ 1.

Using the differential equation and the abbreviated form for y(x0 + th),

y(xo + th) = A(t)y(xo) + B(t)y'(x0)h + C(t)y"(x0)h2/2
(7)

-f D(t)y(Xl) + E(t)y'(Xl)h + F(t)y"(Xl)h2/2 + H(t),
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we obtain

y(x0 + th) = y(x0)[A(t) + f(x0)C(t)h2/2]

(8) + y'(xo)B(t)h + y(x1)[D(t) + F(t)f(xx)h2/2}

+ y'(x1)E(t)h + [g(xo)C(t) + g(xl)F(t)]h2/2 + H(t).

Letting

a(t,h) = A(t) + f(x0)C(t)h2/2,

y(t, h) = D(t) + F(t)f(Xl)h2/2,

and A(r) = Ar, B(r) = Br, etc., /(a;0) = /o , /(xo + rh) = fr, etc., we have,

substituting Eq. (8) into Eqs. (4) and (5) for the values of y(r2), y(n), two linear

equations to be solved for y(x0 + h), y (x0 + h). They reduce to

(9)
y(x0 + h)\        _   _   I y(xo)\        _ _      *

= Ao Bo     ,        ) +A0G0 + A0 To*
y (xo + A)/ \y (xo)/

where Âo = C/det (C), in which

(10)     C =

5/¡
l-~(frEr+fsEs) °^(sfrEr + rfsEs)

5k

.12
[fr7r+fsyS]  +  hfl

5tí
(Sfrjr +  rfsjs)

12 12

It is easily seen that det (C) ^ 0 if h is sufficiently small. B0 denotes the matrix

(11) Bo =

1 + je} h + 12   ^ "' ~*~ Tf' as%>

12 ^ + Ï2 ^r0lr +^a^

h + g- (sfr Br + rfs B.)

W2
1   + ~   (/r Br + f. B.)

Go denotes the column vector

1.2

(12)   Go =

c tf 5/j2 5/j'
Ï2fi,° + 12" ̂9r + ^ + 2Ä ̂ 9°(sCrfr + rC'«-^ + 9i(sFrfr + rFj,)]

h 57) ^h3
¿ [go + 91] + Y2 k + »J + U tffoi^/- + c''/') + ¡^^ + *■•/■)]

In order to obtain an upper bound for the truncation error vector we consider

the quantities H(t), T0, f0.

By the definition of H(t) given above,

H(r) = -hVs3yVI (£r)/720 = -A6î/VI(£r)/90,000.

H (s) = —Ay   (£»)/90,000 where £r and £s are in the open interval (x0, x0 + A).

T0 and To are given by the following formulae :

(13) To = -[f(x)y(x) + g(x)]lI A7/(96-15750),

(14) fo = -[(xo + h- r)(f(x)y(x) +g(x))]J?h7/(m-l5750),

where £3 and £4 are in the open interval (ar0, x0 + A).
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Thus we obtain for To* the following:

(15) To*  =

5h2
g- [«/, Hr + rf. HB] + To

^[frHr+fsHe] + To

Thus the approximate solution at xi given by

(16) ^)-I.Ä^)+i,ft

has local truncation error 0(h).

We shall consider three computational examples. We have written programs for

the CDC 1604 computer, FORTRAN (single-precision), for the following methods:

Runge-Kutta, Numerov [4] and Gautschi (Stromer interpolation of trigonometric

order two) [2]. We have used the same estimate of the period T = tt/5 as Gautschi's

article [2].

Example 1. A Mathieu differential equation y" + 100(1 — .1 cos (2x))y = 0,

with the initial conditions taken as x = 0, y(Q) = 1, y'(0) = 0. After starting

Numerov's and Gautschi's methods by the Runge-Kutta method we obtain the

values shown in Table 1.

Example 2. Bessel differential equation y" + (100 + \x2)y = 0. We take the

initial conditions at x = 1, such that the solution is y/x </o(10a;). We have A as

0.02 again. We have taken the initial values from [1] to 10D. For Numerov's and

Gautschi's method we have taken the other starting values from the table also

(Table 2).

Example 3. Our last example is the differential equation y" = (1 + x2)y. The

initial conditions in this example were chosen at x = 0 so that the solution is

ex l2. We again take A = 0.02 and obtain the results of Table 3, after taking all the

necessary starting values as exact.

The general second order equation y" = N(x)y + f(x)y + g(x) can be treated

by the above techniques, if one treats the N(x)y term by integration by parts. One

may also use a well-known transformation [6] to eliminate the y term from the

above differential equation. The procedure one should use depends primarily on

whether or not N(x) is explicitly integrable.

It is well known that two-point boundary value problems of the form y" —

f(x)y + g(x), y (a) = A, y(b) = B, — » < a < b < », f(x) > 0 can be solved
by initial value techniques either by the method of superposition or by the nu-

merical construction of the Green's function of the above differential equation. We

have made calculations on problems of the above type with the one-step method

under consideration and have found the results to be quite satisfactory.

I am especially indebted to Professor P.C. Hammer for many discussions on the

numerical solution of differential equations, and to the Wisconsin Alumni Research

Foundation and the National Science Foundation who, through the Graduate Re-

search Committee, made available to me the computing facilities of the Numerical

Analysis Laboratory of the University of Wisconsin.

Numerical Analysis Laboratory

University of Wisconsin

Madison, Wisconsin



668 J.   T.   DAY

Table 1

Mathieu Differential Equation

X

.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Lobatto

.069208517
-.908417862
-.693960833
.230958975
.976369849
.205766632

-.961679414
•.426531682
.602236752
.941737244

Runge-Kutta

.069156017

.908438043

.693810059

.230894461

.976344156

.205359297

.961718360

.426046799

.602611939

.941526628

Numerov

.069220716
-.908410736
.693995071
.230964653
.976362821
.205865854
.961651417

-.426645356
.602128771
.941766210

Gautschi

.0692114316

.908415864
-.693958722
.230964653
.976369948
.205761493
.961679510
.426531047
.602238461
.941734467

Exact (7D)

.0692085
-.9084179
-.6939608

.2309590

.9763699

.2057667
-.9616794
- .4265317

.6022367

.9417373

Table 2

Bessel Differential Equation

2
3
4
5
0
7
8
9

10

Lobatto

.236208546

.149593736

.014733783

.124800157
-.224059244
.251104887
.197260634
.079890053
.063200835

Runge-Kutta

.236214981

.149640613

.014832263

.124673672

.223958092

.251090902

.197374820

.080127641

.062899111

Numerov

.236205562
■.149580121
.014708498
.124829485

-.224078623
.251099928
.197223810
.079826058
.063274262

Gautschi

.236208655

.149594204

.014734630

.124799188

.224058612

.251105055

.079892131

.079892131

.063198428

Exact (7D)

.2362085
-.1495937

.0147338

.1248002
-.2240592

.2511049
-.1972606

.0798900

.0632007

Table 3

Differential Equation y"  = (1 + x*)y

X

1.0
2.0
3.0
4.0
5.0

Lobatto

1.648721269
7.389056087

90.01713107
2980.957976

268337.2853

Runge-Kutta

1.648721264
7.389055819

90.01710938
2980.954707

268336.2736

Numerov

1.648721287
7.389056409

90.01714644
2980.959682

268337.7249

Exact (10D) Machine

1.648721271
7.389056099

90.01713130
2980.957987

268337.2864
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