
Approximate Integration Formulas of Degree 3

for Simplexes

By A. H. Stroud

1. Introduction. Here we consider approximate integration formulas of the form

I    ■■ ■    I   /(Zl ,  • • • , Xn) dXi  • • • dxn Ä 2 Aif(pi)

where Sn is an w-dimensional simplex ( a triangle f or n = 2 ; a tetrahedron for n = 3 ).

The Ai are constants and the pi = {pa.,p&, • • • , Pin) are points in the space.

The formulas we consider all have degree 3, that is they are exact whenever / is a

polynomial, in the n variables, of degree ^ 3.

We show how to obtain such formulas in which all the Ai are equal and which

contain N = n(n + 1) points. This can be done for all n ^ 2. For 2 ^ n 5Í 8 such

formulas exist with all the points interior to Sn . For n^9, however, the formulas

have the undesirable feature that all the points are exterior to Sn .

Other formulas of degree 3 with unequal coefficients are known for Sn . Hammer

and Stroud [1] give a formula using n + 2 points and Stroud [3] gives a formula

with 2n + 3 points. By the method described in [4] formulas of degree 3 can be

constructed using 2" points. Since the only previously known formulas, with all

positive coefficients, of degree 3 for Sn were the 2" point formulas, the ones given

here become the formulas with the fewest points with this property (for n 2: 5).

(The (n + 2)-point formula has one negative coefficient for n ^ 2; the (2n + 3)-

point formula has one negative coefficient for n ^ 4. Formulas of degree 3 are

known for the n-dimensional cube and sphere which have 2ra points with equal

coefficients [2].)

To develop the formulas below we use the special simplex Sn with vertices

(0, 0, 0, • • • , 0)
(1,0,0, ...,o)

(0, 1, 0, • • • , 0)

(0,0,0, ...,i).

For this simplex the monomial integrals are

/  • • •   / x\l ■ ■ ■ xan dx =
ail ■■■ anl

(n + ai + ■ ■ ■ + a„) ! '

2. The Triangle. Before discussing higher values of n, n ^ 3, we first discuss

the somewhat special case n = 2.

We wish to construct an approximate integration formula of degree 3 for Sí

with 6 points in which the coefficients Ai are equal:
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Ai = Aï = • •• = A6 = A.

We will seek such a formula using the following points

(vi ,  V2),       (v1 , Vz),       (v2 ,  Vz),

{Vi , vi),     (vz , vi),     {vz , v2),

where

n + n + * = 1,       0 ^ Vi g 1,       i = 1, 2, 3.

It should be noted that this set of points maps onto itself under any linear trans-

formation of S2 onto itself.

If these points are to form the desired integration formula the following equa-

tions must be satisfied :

(1) 6A = 1    = [ dx,

(2) 2A[n + v2 + vz\ =    \ =  f Xi dx,

(3) 2AW + vi + ,32] =   Jr=  f  xldx,
¿<t       Jg2

(4) 2A[V! V2  +   V! VZ  +   V2 Vz]   =     —-   =    /     X! X2 dx,
¿\ Js2

(5) 2Ak3 + v23 + vz3} = ~ =  f  Xi3 dx,
ÍA)        Js2

(6) A[vi v2 + vi v2 + vi vz + vi vz  + vivz + vi vz ] = T—- =  /   XiXj dx.
iZv)       Js2

Here i,j = 1,2 and i j¿ j. We must then have

A =xV,

(7) V!  +   V2  +   V-s   =   1,

(8) ViV2  +   V\Vz  +   V2Vz   =   \,

(9) vivm = -g-V-

This last equation follows from

(H vi)3 — 3 X ViVj — J2 v3 = 1 ~ 3(^jr) — ̂ j- = ■& = 6vizi's •

It is not difficult to show that if equations (7), (8) and (9) are satisfied then

(3), (5) and (6) are also satisfied. For example, to verify (6) :

Z2  Vi ¿2  ViVj   —   ZvXV2Vz   =   \   —   &  =  £   =   £  ViVj .

This shows that v\, v% , vz must be the zeros of

Pz(x) = x3 — x2 + \x — -g^.

These zeros are irrational; their approximate values will be given in the next sec-

tion.
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3. Higher re. We now seek an approximate integration formula for Sn , n ^ 3,

with equal coefficients by selecting a point

v =  {vx,v2, ••• , vn)

in the simplex and taking, together with this point, the set F of all points v maps

into under the symmetric group Gn of all linear transformations of Sn onto itself.

Since Gn contains (n + 1)! transformations the set F contains (re + 1)! points

(including v). This is true if all the coordinates vi, v2, ■ ■ ■ , vn are distinct; if k of

the vi are equal then F contains (re + 1 ) \/k ! points.

At first we assume that all the v(, i = 1, 2, • • • , n, are distinct, but later

we will choose some of them to be equal.

Another way to describe the set of points F is to take real numbers vi, v2, ■ ■ ■ ,

vn+i for which

Vl + v2 +

and take as the points in F points

( "i, "2 ,

( "l , v2,

( "1 . v2,

(vi, vz ,  ■

+   V„+l   =    1

,   Vn-2 ,   Vn-\ ,   Vn),

,   Vn-2 ,   y„_i ,  Vn+\),

,   I'íí—2 ,   Vn ,   Vn+l),

Vn-l ,   Vn ,   Vn+l),

(v2 ,   Vz ,   ■ ■ ■   ,   Vn-l ,   Vn ,   Vn+i),

together with all points which can be obtained from any one of these by all pos-

sible permutations of its coordinates. That is each of the n + 1 points give rise to

n\ points for a total of (n + 1) !•

If the points in F are to be an integration formula of degree 3 for Sn in which

the coefficients are all equal, then the following seven equations must be satisfied :

(10)

(11)

(12)

(13)

(14)

(15)

(n + 1)! A =1. =  f  dx,
n!      Jsn

n! A[vi + v2 + • • • + vn+i] = 7——TT- = /   Xi dx,
(n + 1)! Jsn

»! A[vi + C22 + • • • + v\+i] = -———- = /   Xi  dx,
(re + 2) ! hn

l(n — 1)1 A[vi v2 + vi v3 + ■ ■ ■ + vn k„+i] = -—¡—— = /   Xi Xj dx,
re + ¿)\ Js.

re! A[vi  + v2  + ■ ■ ■ + v\+i} =

(re+ 2)!

6

(re + 3)!

(n   —   1) ! A[vi V2  +  Vl V2    + Vl Vi +   • • •    +  Vn Vn+l  +   V„ V„+l]

2

~ (n + 3)!

=  /   Xi  dx,

~~"       / wj   ti/j   \ijjj

Js.
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6(re — 2) ! A[vi v2vz -\- viv2Vi -\- • • • + vn-i vn vn+i]

(16) 1

(n + 3)!
—   i   Xi Xj Xji UjX'

Ja.

Then A = l/[n!(re + 1) !] and to solve the remainder of the equations for the

Vi we seek these to satisfy (11), (13) and (16), that is

Vl  +  V2 +   • • •   +  Vn+l   =   1,

re
Vl V2  +   Vl VZ  +   • • •   +  Vn Vn+l   =

Vl V2 Vz  +   ■ ■ ■   +   Vn-1 Vn Vn+1   =

2(n + 2) '

re(w — 1)

6(re + 2) (re + 3)

If these equations are satisfied then, as for re = 2, it is easy to verify that (12),

(14) and (15) are also satisfied.

This shows that the »>,-, i = 1, • • • , n + 1, must be the zeros of a polynomial

P/    \             n+l            n    i               re n—1
n+i(x) = X       - X   + —-—— X

2(re + 2)

n(re   —   1) n-2     ,     7 n-Z    , .     , ,     ,
+ kn-z x      + ■ • • + ki x + fco.

6(n + 2) (re + 3)

We now seek a polynomial of this type with all real zeros with the property

that n — 1 of the zeros are equal. If Pn+i(x) is to have a zero vi of multiplicity

n — \ then vi must also be a zero of

(17) PlT+Tix) = (n + l)x3- Sx2 + —J- x - I
re + 2 (n + 2)(re + 3)

and then

Pn+l(x)    =   (X   -   Vl)n-\X2  ~bx  +  C),

b   =   1   -   (»-   l)n,

re , ,\     ,  w(» — 1)    2
C=2(re^)-(n"1),,1 + —"2— *•

Let vn , vn+i denote the zeros of a; — bx + c. We can now construct formulas

for various values of n. In principle for each re there should be 3 such formulas, one

corresponding to each zero of (17). Since we will not admit points with complex

coordinates this will be true only if vi and the corresponding vn , vn+i are real.

In Table 1 we tabulate these real solutions for certain n. Equation (17) always

has 3 real zeros, but the largest of these always gives complex values for v„ , vn+ï.

For re è 9 the smallest zero of (17) also gives complex vn , vn+x. For 3 ^ re ¿ 8

there are 2 real solutions and for 5 ^ re g 8 one of these gives a formula for Sn

with all points exterior to S„ (since vn is negative). For re ^ 9 the single solution

also is exterior to S„ .

We will not carry out proofs, for all large re, of these statements about the be-

havior of the three possible solutions. We have verified, by computation, that they
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Table 1

Coordinates of Points in Approximate Integration Formulas

2
3

4

5

6

7

9
10
20
50

100

vi

0.1090390091
0.09484726491
0.1881284504
0.08413783241
0.1582718214
0.07573830688
0.1366074267
0.06895619726
0.1201666155
0.06335425440
0.1072617271
0.05864185796
0.09686195317
0.08830191983
0.08113284981
0.04478490125
0.01910896646
0.009772078935

0.2319333686
0.2412769968
0.05236466588
0.2460180205
0.01736377592
0.2489442226

-0.005814213043

0.2515528295
-0.02192591378

0.2550852934
-0.03352878861

0.2618241841
-0.04210939636
-0.04858472329
-0.05354757701
-0.06983035166
-0.06445758604
-0.05308566241

Vn+l

0.6590276224
0.5690284733
0.5713784333
0.5015684822
0.5078207600
0.4481025499
0.4593845062
0.4036661842
0.4210928365
0.3647891803
0.3899584259
0.3276828101
0.3640757242
0.3421693647
0.3233519287
0.2189172279
0.1281182294
0.08564984787

are true for re ^ 1000. Proofs could be given based on estimates for the zeros of

(17). For example, the middle zero of (17) lies in the interval (re + 3)_1 < x <

(n + 2)_1 and in this interval c < 0 (for large n) which means b2 — 4c > 0 and

Vn   < 0.

The values for re = 2 are those found in the previous section. However, if re = 2

is substituted in ( 17) and in the expressions for b and c we arrive at the same results.

4. Relationship to Orthogonal Polynomials. We will show that the re (re + 1)

points in any one of the formulas described above can be considered as the complete

solution of a certain system of re polynomial equations which have a certain or-

thogonality property.

First consider the case re = 2. The 6 points in the constructed formula are the

solution of the simultaneous equations

Pi(xi) = (xi - Ki)(a;i — v2)(xi - v3) = 0,

P2(xi, x2) = x2 + x22 + xix2 — xi — Xi + i = 0.

(The easiest way to show that this is true is to assume a P2 with this property can

be found of the form

P2(xi , x2) = a(xi + xi) + bx!X2 + c(xi + x2) + \.

Then we must have

P2{vi , v2)   = P2(vi , Vz)  = iM^ , vz)   =0
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and using equations (7), (8), (9) it can be shown that P2 has coefficients a = b =

— c = 1.) Since the points in the formula are zeros of both Pi and P2 it is immedi-

ately obvious that these polynomials satisfy the orthogonality conditions

/   Pi{xi) dx = 0,
Js2

/   P2(xi, x2)Q(xi, x2) dx = 0
Js2

where Q is any polynomial of degree zero or one.

In a similar way we can show that for re = 3 the points in each of the two dis-

tinct formulas are the solution of a system of the form

Pi(xi) = 0,

Pa(xi , X2)  = 0,

Pz(xi ,x2,Xz) =0

where Pi, P2 have degree 3 and P3 has degree 2. To do this we take polynomials

of the form

Pi(xi)   = (xi — vi)(xi - v3)(xi — Vi),

P2(xi, x2) = (x2 - vi)[a2(xi + xi) + b2xix2 + c2(xi + x2) + 1],

Pz(xi, x2, xz) = az(xi + xi + xi) + bz(xix2 + Zix3 + x2xs) + cz(xi + x2 + x3) + 1

and calculate the unknown coefficients in P2 and Ps by the requirements

^2(^1 ,   Vz)    =   P2(vi ,   Vi)   =   P2(vz ,   Vi)    =   0,

ÍM^l ,   Vl ,  Vz)    =   Pä^l ,   Vi ,   Vi)   =   f^H ,   Vz ,   Vi)   =   0.

A proof that the 12 points in the integration formula satisfy the resulting system of

equations, and that there are no other solutions, can be made by simply enumerat-

ing all possible solutions. As before, it is obvious that Pi and P2 are orthogonal to

any polynomial of degree zero and that P3 is orthogonal to any polynomial of degree

zero or one.

The generalization to arbitrary re is now almost obvious. The n(n + 1) points

in the constructed formula are the solution of a system

Pi(xi) = 0,

P2(xi, x2) = 0,

Pn-l(Xl ,   ■ ■ ■   , Xn-l)    =   0,

Pn(Xl , X2 ,   ■ ■ ■   , Xn)   =   0,

where Pi, • • • , P„_i have degree 3 and P„ has degree 2. These polynomials are

constructed as follows:
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Pi(xi) = (xi — vi)(a;i — vn)(xi — vn+i),

[k k k "I

ak J2 xi -f- bk  J2 XiXj + ck^2 Xi + I \,
t=l ¿,3=1 ¿ = 1 J

fc = 2, 3, • • • , re - 1,

n n n

* n\Xl ,   * * *   , Xn) "ii   / i Xi    ~j~ On     / .   Xi Xj     \~  Vn   / * Xi     \~   A
i=l i,j=l i=l

where the unknown coefficients ak, bk, ck , k = 2, ■ ■ ■ , n are found by the require-

ments that

Pk(vi ,   ■ ■ ■   ,   Vn)    =   Pk(vi ,   • • ■   ,   Vi,   Vn+l)    =   Pfc^l ,   • • ■   ,  Vl ,  V„ ,   Vn+l)    =   0,

fc = 2, 3, • • • , re.

The proof can be made by induction on re. Assuming that the form of the solu-

tion is correct for order re — 1, then all possible solutions of the nth order system

can also be enumerated (which we will not do) and thus it can be shown that the

result is also true for order re. Pi, • ■ ■ , P„_i are orthogonal to any polynomial of

degree zero and Pn is orthogonal to any polynomial of degree zero or one.

5. Concluding Remarks. As a simple example of the application of these inte-

gration formulas let us evaluate numerically the integral

(18) f  (1 + xi + x2 + xz)~* dx = Ä ^ 0.0208333333.

Here re = 3 and in addition to the two 12-point formulas given in Table 1 above

we also use for comparison the formulas of degree 3 given in [1], [3] and [4] men-

tioned in the introduction. The results are summarized below:

Approximation to (18)

First formula of Table 1. 0.0206178943
Second formula of Table 1. 0.0206308008
Formula of [1], 5 points. 0.0205151884
Formula of [3], 8 points. 0.0218716667
Formula of [4], 8 points. 0.0206454784

It should be noted that the third degree formula of [3] involves, in princi-

ple, 2re + 3 = 9 points for re = 3. For re = 3, however, one of the coefficients re-

duces to zero so, in effect, there are only 8 points.

In a certain sense the n(n + l)-point formulas developed here are a generaliza-

tion of the classical Gaussian 2-point formula of degree 3 for a one-dimensional

interval. The most obvious similarity between these formulas is that in each case

the formula has all equal coefficients and in each case the formula is mapped onto

itself under all linear transformations of the region onto itself. The w(re + 1)-

point formulas, however, do not have the property of having a minimal number of

points as is true of the Gaussian formula.
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