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Let A = [an] be an n X n matrix with complex entries. We define p(A ) to be

the spectral radius of A and | A | to be the matrix [| a,y |].

A. Brauer [1], W. Ledermann [2] and A. Ostrowski [4] have developed bounds for

p(\ A |). Their results, coupled with the result of Perron and Frobenius [6] that

p(A) ^ p(\ A |) give upper bounds for p( A ) which are not less than p(\ A | ). These

bounds are restricted to matrices with nonzero entries and do not take into account

the effect of the phases of the entries of A on p(A). In Section I of this paper we

obtain a sequence of bounds for p( A ) in terms of p( | Ar | ) (r = 1, 2, • • • ) which are

less than or equal to p( | A | ) and converge to p( A ). In this manner we are partially

accounting for the effect on p(A) of the phases of the a,y. In Section II we derive

bounds for p(A) in terms of the Frobenius norm of A. These bounds always lie in

the field of values of A, are computationally well suited to complex matrices and

'can be used in conjunction with the techniques of Section I.

The authors are indebted to Olga Taussky and Alston Householder for sugges-

tions.

I. Bounds for p(A). Let a,* = | a,* | exp (iBjk), where 0 á 0y* < 2ir. We define

«*« [p(\ A" \)]llh,       fc=l,2, ....

Lemma 1. If k and r are positive integers, then coir g w*.

Proof. Since 0 á | A*r | á I A* |r, it follows that p(\ Akr \ ) £ p(\ A* |r). We have

always p(| A* |r) = [pi\ A" |)f. Consequently,

[p{\Akr\)]mr£[p{\Ak\)]m

Or Wkr   é   <¿k ■

In particular, we deduce

co, S» «i = p(| A |),       r = 1, 2, ••• .

Lemma 2. The w* (fc = 1, 2, •••) form a sequence of upper bounds for p(A) which

converges to p(A).

Proof. Since P(Ak) á p(\Ak\), it follows that p{A) è [p{\ Ak \)]m = «*,

which proves our first assertion. To prove convergence of the a>& we define the

multiplicative matrix norm

N{A) =  max (23 I <*« I ) >

and use the general results [3] that

lim[iV(A*)]1M= P{A)
k-*oo

and [p{A )]* g uk á N{Ak). Taking fcth roots we conclude

lim uk = p{A).
Jfc-*00
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Note. In general the wA do not decrease monotonically to p{A). However,

Lemma 1 can be used to obtain decreasing subsequences such as coi, w2, co4, cos, • • • •

If A is irreducible, it is known [6] that «i = p{A ) if and only if A = e'*D\ A \D~l,

where D is a diagonal matrix whose diagonal entries have modulus unity. If A is

of this special form, then u>i = ak (k = 1, 2, • • • ). Furthermore, if we know all the

co* are equal, Lemma 2 tells us that p(A) has their common value. It is natural to

ask what happens in case coy = co* for some j and k.

Theorem 1. If A has only nonzero entries and if m > 1, then coi = com if and

only if p(A) = coi.

Proof. We have already remarked that p(A ) = coi implies ui = w* (k = 1,2, • • • )

and, in particular, coi = com .

Conversely, suppose coi = com for some m > 1. This means

P(\Am\) = [P(\A\T= P[\A\m].

Since | A \m is a positive matrix and \ Am \ ^ \ A \m, the Perron-Frobenius theory

tells us that | A |"" = | Am |. If we write out the expressions for the j, kth entries of

| A |m and | An |, and use the fact that the modulus of a sum of complex numbers

equals the sum of their moduli only when the numbers have the same arguments,

we obtain the equation

6jh + Ohh + ■ • • + 6im_lk = ajk .

Here, and elsewhere, congruences are modulo 2ir; a¡k is the argument of the j, fcth

entry of A™ and is independent of the indices li, ■ ■ ■ , lm~i, 1 ^ U ^ n (i = 1, ■ ■ ■ ,

m — 1). In particular,

«a = Bu + dji + dn+  ■■■  + 6U = 6n + On +  • • •  +öi, + Bu = a¡j .

Similarly,

an = 6a + 0u + • • • + 0U + du ,

and

Oijk  =   dji  +  du  +   • • •   +  011  +  0,4 .

Therefore,

aij + ajk = dn + 0n +  • • •  + 0X1 + 01A. + 0yi + 0n +  • • •  + 6n + 0iy

= aik + a¡j = OLik + an .

Let or = an — air, 1 ^ r ^ n. Then

aih = at"i + ctjic — an

= an + au — an

=  (2an — au) + au — an

= 5i — 8t + an .

Define D to be the matrix

diag (exp iôi, ■ • • , exp iôn).

Then A™ = (exp ian)D\ Am ¡D'1 so that

P(Am) = p(|Am|)
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and

p(A )   =   C0m =  Wl .

Theorem 2. If m and r are positive integers with r > 1, and \ Am | > 0, then

wm = co™ if and only if p(A ) = com .

Proof. Suppose com = co™ . Then

[p(\An\)]llm= [p(\ A'm \)]llrm

and

[p(|Am|)]r= p(\A™\).

Since | Am | > 0, if we apply Theorem 1 to Am, we may conclude that

p(Am) = Pi\Am\).

Hence, p{A ) = um.

Conversely, suppose p{A ) = com. By Lemma 1, com ̂  co™ and, by Lemma 2,

«r« è p(A). Consequently, com = co™.

Theorem 1 remains true if we replace the assumption "A has only nonzero

entries" by the slightly weaker condition "for some r neither the rth row nor the

rth column of A has zero entries and | A |m > 0." Theorem 2 can be modified anal-

ogously. However, the following example shows that in general it is not possible

to relax the assumption of Theorem 1 that A is a matrix with only nonzero entries

to "A is irreducible." This relaxation is possible in the Perron-Frobenius theory

[6] and one is tempted to try it here. Let

A =
0    1    0"

-1    0    1

0    1    0

Then A is irreducible but p{A) = 0 and coi = co2 = y/2.

In Theorem 2 we proved that the condition co,- = co* , where i < k, i \ k, and

| A* | > 0, is sufficient to ensure p(A) = co<. One would like to eliminate the re-

quirement i | k; however, examples have been constructed showing that, in general,

this is not possible.
The following example shows that in some cases a rough estimate for co2 is a

better bound for p(A) than cox itself. Let

G :!]•
Then p(A) œ 1.62, coi œ 2.62 and co2 ̂  1.82. The square root of the Gerschgorin

circle estimated for p(| A21 ) is 2.

H. Upper Bounds for p(A) in terms of e(A). The Frobenius multiplicative matrix

norm e(A) [5] is defined by

[n -11/2

Since e is a multiplicative norm we have p(A) g «(A). The following result gives

the condition for equality.
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Lemma 3. The Frobenius norm of A = [a¡k] is its spectral radius if and only if

a¡k = elSXjXk, where xk denotes the complex conjugate of xk and 0 ^ 0 < 27r.

Proof. If ajk = e'9XjXk {j, k = 1, • • ■ ( n), then the only nonzero eigenvalue of

A is e,ö(23?=i I Xj |2) corresponding to the eigenvector with components x¡

(j = 1> " • • , n). Furthermore,

[e(A)]2=   ± \xj\2\xk\2
3,k=l

= (t I Xj I2)' = [p{A)f

On the other hand, suppose p{A) = e(A). We may assume p{A) > 0 since

e(A) = p{A) = 0 implies A = 0. Let et6p{A) be an eigenvalue of maximum

modulus, whose associated eigenvector has components Xj (j = 1, • • ■ , n) nor-

malized so that p(A) = 23í"-i I Xj |2. We have, by the Cauchy-Schwarz inequality,

\eiep(A)xj\2 = 23 ajk xk
k=l

t

j=   1,

In order that p(A) = e(A), equality must hold for each,/ above, which implies

ajk = ijyS*        (j,k = 1, ■ ■ ■ ,n),

where the rjj are constants. Then

n

e,$p(A)xj = J2vjXkXk = ViP(A),
k=l

-«__J   _       _   .«-so that r\j = e x¡ and a¡k = e' x¡xk, as required.

The following alternate proof of Lemma 3 is due to Alston Householder.

The Frobenius norm is the square root of the sum of the squares of the singular

values of A, and the largest singular value alone is greater than or equal to the

spectral radius. Hence, for equality, the others must be zero implying A*A is of

rank 1. Therefore A is also of rank 1 and hence of the form ab* where a and b are

column vectors. But the only non-null root of ab* is b*a. From [t(ab*)]2 = a*ab*b =

\b a | , we conclude a and b are linearly dependent, from which the result follows.

Ideally, one would wish to develop bounds for p(A ) which depend on e(A ) and

some measure of the departure of A from the special form of Lemma 3. One ap-

proach is to minimize the Frobenius norm of matrices which are similar to A.

Define
n \ -11/2

23 I aa t) - I an MRi =

and

Ci =

L V-i

í 23 I a» N - I an \2
L V-i

Theorem 3. // A is an n X n complex matrix, then

[p(A)f á [t(A)f max I Ri — C
,l<¡án 4



66 N.   A.   DERZKO  AND   A.   M.   PFEFFER

Proof. We prove the equivalent statement

\p{A)]2 g KA)]2- (Ri- Ci)2,       i= 1, ■■■ ,n.

Suppose first that neither A¿ nor C¿ is zero. Let Dv be the diagonal matrix whose

diagonal entries are all unity except for y ^ 0 in the ith position. Then piD^D^1)

= P(A). Hence, [P(A)]2 ^ [e(i>tAZ)„-1]2 = U(A)f - R/ - C2 + v2R2 + v~2C/.

If we minimize the right-hand expression over v we obtain v2 = Ci/Ri, and

[p(A)f :g [e(A)]2- (Ri-d)2.

Since p(A ), e(A ), R{ and d all depend continuously on the entries of A, it follows

that the restriction Rt, C¿ ^ 0 can be removed.

If it happens that Ä,, d ?¿ 0, where i is the index which gives the maximum in

Theorem 3, then Theorem 3 may be applied to the matrix DvADv~l, where

v2 — d/Ri, giving a possible improvement in the bound for p(A ).

If Xi, • • • , X„ are the eigenvalues of A, then it is easily seen that

inf {[etSAáT1)]2: S nonsingular} = 23 I X< |2.
i *-1

Hence, the bound given by Theorem 3 must be greater than or equal to 23"-i I X< |2.

We will now consider bounds which in some cases are actually less than

23 ÍU | X¿ |2. Let tr A be the trace of A.
Theorem A. If A is an n X n complex matrix, then

p(A) S (1 - l/n)ll2{[t(SAS-1)]2 - | tr A \2/n}m + | tr A \/n,

for any nonsingular S.

Proof. Let \M be an eigenvalue of maximum modulus. Then, from

¿|X,|2 :£ [eOSAS-1)]2
t-i

by an application of the Cauchy-Schwarz inequality we find

I x,, |2 ̂  ksaO]2 - ZI x.- i2

Ú MS AST1)]2- Ex,. /(»-!)
2

= ^(SAÄ-1)]2 - | tr A - \„ \2/(n - 1),

from which it follows, by elementary means, that

| X* | ¿ (1 - l/tt)I/2{[e(SAO]2 - | tr A |2/n}1/2 + | tr A \/n.

Theorem 5. Let A be an n X n complex nonsingular matrix. Then

[p(A)f é MSAS'1)]2 - (n - 1){\ det A |2/[e(SAA-1)]2¡1/(n-1)

for any nonsingular S.

Proof. Let X.„ be an eigenvalue of maximum modulus. As in Theorem 4,

\\M\2è[e(SAS-1)]2-  E|X,-|2.

An application of the arithmetic-geometric mean inequality yields
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But

HSAS-1)]* - (r 1) III x, \M"-1}.
i^M

n'IM,/(-U- (|detA|7|X„|2)2\l/(n-l)

è ¡IdetA f/MSAS-1)]2]1""-",

from which the result follows.

We observe that the quantity [eGSA/S-1)]2 occurring in Theorems 4 and 5 may

be replaced by the bound for it given by Theorem 3. We use this fact in the discus-

sion of the following numerical example which illustrates the various bounds. Let

A =
2 3    2

10    3    4
3 6     1

Then p(A) = 11 and (23<-i I h f )"2 = 11.58. The Ledermann bound [2] is 16.77.
The bound of Theorem 3 is 11.9 and, using this bound, we obtain from Theorem

4 the bound 11.3 and from Theorem 5 the bound 11.6.
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