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This integral appears in a number of diverse problems (see, e.g., [1], [2], and [6]).

The present authors required it in connection with certain operations involving

"white" noise. For example, the intermodulation distortion generated by taking

the nth power of a narrow-band, high-frequency white noise is proportional to

In(b):b = 0 corresponds to the distortion level at the mid-band frequency, 6 = 1

to the distortion level at the edges of the band, b = 2 to the distortion level at fre-

quencies spaced by twice the semi-bandwidth from the center frequency, and so on.

In closed form, In(b) is given [3] by

wM n v        (-l)r(b + n- 2r)n"1 n^,^

2n~l osr<V+»)/2 r! (n — r)\

1 (where r takes integral values),

= 0,       n S¡ b < oo.

(The lower limit of r is not correct in [3]. ) The special case of this formula for b = 0

is given in [4], [5], and [7]. This expression for In(b) is useful for small n, but becomes

prohibitively cumbersome, even for b = 0, as n increases beyond the range covered

in [2]. One is thus led to seek a limiting form for large n.

We consider first the case 6 = 0. For the smaller n's it is practicable to express

7n(0) in rational form, and this is done up to n = 12 in [4].

The following Table 1 extends Grimsey's table up to n = 16. In [2], a ten-place

table is given for 1 ^ n g 30. The entry for n = 30 is in error, and should read

0.25104 85150.
Goddard [5] takes to task the author of [1] for his lack of rigour, and attempts

to supply a deficiency in that reference by deriving what he claims to be an asymp-

totic expansion for 7„(0), applicable for large n. In fact, while Goddard's method is

of considerable interest it involves steps of which the region of applicability needs

careful scrutiny. (He has, in addition, made an analytical error resulting in an in-

correct coefficient for his final term. )

Goddard's approach'is based on a relation which, after correcting some misprints

in the version in [5], we can give as

.     /sinaA ^      BK      ,o \2

where the BK's are the Bernoulli numbers.

Need for caution is immediately apparent, since the left-hand side becomes

imaginary for x in the ranges (2m — 1 )ir to 2mir (m = 1, 2, 3, etc. ), while the right-

hand side is always a sum of real terms. It can, in fact, be readily shown that the

right-hand side diverges for x = ir. Goddard then writes
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cu) -[í + S-'"]-»(-t)-
where the a's are functions of n to be determined, and proceeds to in,egrate expres-

sion (1.1) term by term, using the relation

Table 1

/n(0)

13
14
15
16

20646903199/54499737600
27085381/74131200
467168310097/1322526965760
2330931341/68108040000

The coefficients am are obtained by expanding the exponential expression ( 1 ) after

removing the term exp (—na;2/6), and collecting powers of x. Each term obtained

by integrating the terms of ( 1.1 ) yields sums of inverse powers of n (together with

the factor \/(6/irn)), and these can be collected to yield a power series in l/n.

Fortunately, there are only a finite number of contributions to each power of l/n.

Goddard obtained an expansion, in this way, up to (l/n)3. However, the last

term he gives is in error, since he failed to take account of all contributions. We have

evaluated in closed form the coefficients of terms up to (l/n)6. The labour increases

rapidly with the order of the term, and after this point it only seemed worth com-

puting the coefficients to a few significant figures. As far as it has been taken, the

expansion is as follows :

/n(0) Ai      J-Li      J?Z_A       52791    1
20 n      1120 n2 + 3200 n3 + 3942400 n4

C2) I    482427   1        124996631    1       nno8fi1fifiI
K] ^ 66560000 n6      10035200000 n6      UAWÖD1DD ni

- 0.027677 \ + 0.12245 -0 + 0.4523
n8 n9 n

11
i10J

Presumably, this is a divergent series (though, since the coefficients are not

known in analytical form, it is not easy to see how this could be proved), and God-

dard claims it is asymptotic. In fact, after making the correction already mentioned

to the last entry of the table of [2], formula (2) yields 7„(0) values in agreement to

the full ten places with those tabulated over the range 17 ^ n ^ 30. At n = 16

there is a disagreement of one unit in the last place, while at n = 15 there is exact

agreement. For n = 14, 13 and 12 the agreement is increasingly poor, the last two

digits from formula (2) being 93, 56 and 02, respectively, whereas the corresponding

exact values are 95, 45 and 52.

It should be emphasized that the discrepancy is not due to a failure of initial

convergence. For n = 12, eleven terms of the series yield a sum +0.39392 55601 869,

the final term being +0.00000 00000 029. This is to be compared with the true value



EVALUATION OF THE INTEGRAL In(b) 115

0.39392 55651 7 : if the series were convergent, or were asymptotic in the sense that

the error is less in magnitude than the last included term, it is clear that ten-place

accuracy should have resulted.

The discrepancy has, in fact, a rather interesting source. The expression

((sin x)/x)n, when plotted out, will clearly consist of a succession of peaks (positive

for even n, and of alternating sign for odd n) centered round x = 0, x = 4.4934,

etc. In the region 0 g x ^ ir, containing the first peak, the series in expression ( 1.1 )

converges so that (1.1) represents the required expression with increasing accuracy

as more terms are taken. But in the region containing the second peak, the ex-

ponential in (1.1) becomes, for moderate n, vanishingly small to the order of ac-

curacy in which we are interested, and the terms of the series are not such as to

counterbalance the exponential. Consequently, (1.1) cannot include the contribu-

tion of the second and later peaks, and, in fact, it represents an approximation only

to the contribution of the first peak to 7n(0).

This can readily be put on a numerical basis. It is easy to show that a good ap-

proximation to the contribution of the second peak is

i/S){>->-['-G+à)„]}.
where xo is the second root of tan x = x. For n = 12, this gives +0.00000 00049 6,

and adding this to the contribution from expression (2) given above, we arrive at

the value 0.39392 55651 5, which is in adequate agreement with the true value. The

discrepancies at n = 13 and 14, already noted, are accounted for similarly. The

correction is negligible for larger n's.

We have, accordingly, used formula (2), with the aid of an Hec 2M digital com-

puter, to extend the table in [2] up to a" value of n such that a small number of terms

of the formula will suffice to compute further entries. Table 2 covers the range

30 | » ^ 100. Thereafter, four terms of formula (2) give ten-place accuracy or

better.

Returning to the general form In(b), Goddard recommends using, for large n,

an expansion derived in the same way as formula (2) above. Goddard's expansion,

taken to two more terms than he gives, is

_ (1. tf 4- AL y? _ jl\ (lY
\20     "*" 280 3200/ \nj

/603  «      243 . j       52791 \ /lY\
+ \560     '1600     + 3942400/ \n) j '

The leading term is given without derivation in [6].

Since in the fourth term of the series 6 appears to a higher power than l/n (in

later terms the largest excess of the power of 6 over that of l/n increases without

limit), the approximation is obviously useless for large n and 6 not small, but it

may be useful for small 6 (say < 1 ), where only limited accuracy is required.

For general 6 and large n we have not found a satisfactory computation pro-

cedure. However, for integral 6, a suitable recurrence formula is readily derived.
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/n(0)

Table 2

22  r /sin xY

■K Jo     \     X     )
dx

/n(0) /n(0)

0.25104
0.24700
0.24315
0.23947
0.23595
0.23259
0.22936
0.22627
0.22329
0.22044
0.21768
0.21503
0.21248
0.21001
0.20762
0.20532
0.20309
0.20093
0.19884
0.19681
0.19485
0.19294
0.19109
0.18929
0.18754
0.18583
0.18417
0.18256
0.18099
0.17946
0.17796
0.17650
0.17508
0.17369
0.17234
0.17101

85150
63826
33907
52362
90855
33864
77077
26033
94960
05769
87196
74049
06563
29831
93306
50370
57944
76156
68037
99255
37880
54167
20377
10594
00585
67656
90530
49233
25000
00172
58125
83184
60560
76283
17150
70663

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

0.16972
0.16845
0.16721
0.16600
0.16482
0.16366
0.16252
0.16141
0.16032
0.15925
0.15821
0.15718
0.15617
0.15518
0.15421
0.15326
0.15233
0.15141
0.15051
0.14963
0.14876
0.14790
0.14706
0.14624
0.14543
0.14463
0.14384
0.14307
0.14231
0.14156
0.14082
0.14010
0.13938
0.13868
0.13799

24991
68919
91807
83556
34572
35732
78358
54185
55342
74323
03967
37440
68214
90047
96975
83288
43521
72438
65022
16462
22145
77639
78691
21216
01285
15123
59096
29708
23593
37508
68331
13048
68757
32655
02041

Integration by parts gives

/n(6)=-     2n cot x sin (bx) dx

cosec x sin (bx) dx.

The following results can be obtained straightforwardly.
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6 even:

cot x sin (bx)

= cos 6x + 2 cos (6 - 2)x + 2 cos (6 - 4)x + • ■ • +2 cos 2x + 1,

cosec x sin (6z)

= 2 cos (6 -l)a; + 2 cos (6 - 3)x + 2 cos (6 - 5)x + • ■ ■ + 2 cos x.

6 odd:

cot x sin (6x)

= cos 6x + 2 cos (6 — 2)x + 2 cos (6 — 4)x + • • • +2 cos x,

coscc x sin (6x)

= 2 cos (6 - l)x + 2 cos (6 - 3)x + 2 cos (6 - 5)x + • • • + 2 cos 2x + 1.

We consequently have the following relations.

6 even :

h(b)

b odd:

- ? \ln(b) + 27.(6 - 2) + 27„(6 - 4) + • • • + 2/»(2) + /„(O)]

+ ? Ï2In+i(b - 1) + 2/B+1(6 - 3) + • ■ • + 2/n+l(l)l.

h(b) = - I
b

+ Î
In(b) + 2/„(6 - 2) + 2/„(6 - 4) + • • • + 2/„(l)l

J

2/„+i(6 - 1) + 2/B+1(6 - 3) + • ■ • + 2/n+1(2) + WO)! .

Using these relations, from a table of 7„(0) there can be derived a table of In(l ),

and then a table of In(2), and so on (at each stage the largest n is one less than

at the previous stage though, in view of the existence of the simple limiting form for

ln(0) when« is large, this is no hardship).
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