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1. Introduction. The solution of f{x) = 0 in the p-adic field may be calculated

by the Newton-Raphson process, the iteration of the transformation: x —* x —

f(x)/f'(x); as in the real field the formula cannot be applied successfully unless we

have an initial approximation sufficiently close to a root for the subsequent iteration

to converge. (In the p-adic field, "sufficiently close" is equivalent to "congruent to a

sufficiently high power of p.") In this paper we deduce a simple criterion to ensure

that the initial approximation is suitable and we develop a procedure for calculating

the roots of f(x) = 0 (mod pk) for any value of k, using the above process where

applicable and a single-stepping procedure elsewhere. In §6 we apply this algorithm

to investigate solutions of a congruence connected with the existence of close-packed

error-correcting binary codes. We deduce that for n < 2n and 2 ^ r g 20 there are

no such codes other than the trivial codes and the Golay code. This result comple-

ments results of Shapiro and Slotnick [5] and Selfridge [4] which show that there are

no codes for r = 2, or r an odd integer less than 135, orn < 10s.

2. Notation, p is a prime and f(x) a polynomial with integer coefficients;

/ (x) is the formal derivative of f(x). We use the notation p" \\ B for "p" | B and

ptt+1 \ B." Define l(x) by pl \\ f'(x). Define

b(m,x) = Maxjr^ilm - l(x)\.

We write l, h , h, ■ ■ ■ for l(x), l(x/), l(x2), • • ■ ; similarly, for 6, 6i, 6», • • • where
the relevant value of m is clear from the context. We say a; is a solution of type
A mod pm if

(1) /(*) =0(modpm)

and m è 21 + 1. We say x is a solution of type B mod pm if ( 1 ) holds and m á 21.

3. Properties of Solution-Sets.

Lemma 1. (i) If x is a solution of type A mod pm, then b = m — I and 2b ^ m +

1 è 21 + 2.
(ii) If x is a solution of type B mod pm then b = [(m + 1 )/2] and b £ I.

Proof. These results follow directly from the definition of solution type.

Lemma 2. Iff(x) = 0 (mod pm) and X\ = x (mod pb), then

(i) Xiisa solution mod pm of the same type as x.

(ii) bi = b.
(iii) // x is of type A mod pm then k = I.

Proof. By hypothesis, x\ = x + upb for integral u; hence,

(2)_ f{xi) = /(*) + upbf'{x) + vp2b,
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(3) f(xi) = f'(xi) + wp\

for integral v and w, by Taylor's theorem for polynomials. Now pm \f(x) and, by

definition of 6,6 + I ^ m and 26 ^ to; hence in (2)

(4) f(xi) m 0(modpm).

To complete the proof we distinguish two cases.

(a) If a; is a solution of type A mod pm then, by Lemma 1 (i), b ^ I + 1; hence,

in (3), p' || f'(xi), i.e., Zi = Z. Therefore 2Zi + 1 = 21 + 1 g m, Xi is a solution of
type A mod pm, and bi = m — li = m — I = b.

(b) If x is a solution of type B mod pm then, by Lemma 1 (ii), b ^ I; hence, in

(3), h 2; b = [(m + l)/2], i.e., 2Zi S; m. Hence xx is a solution of type B mod pm

and 6i = [(m + l)/2] = b, by Lemma 1 (ii).

This concludes the proof of Lemma 2.

In view of Lemma 2, we define a solution-set mod pm as the set of all X\ with

Xi = a; (mod p ), where a; is a solution of (1) and b = b(m, x). We use the notation

(x, b, m) for such a solution-set and say a; is a representative of it. By Lemma 2

(ii), the value of b is independent of the choice of representative and, by Lemma 2

(i), we may define unambiguously the type of a solution-set as the type of any

representative. Let S(m) be the totality of solution-sets mod pm.

We define an extension to mod pn+r of the solution-set (x, b, m) as a solution-set

(a;i, &i, m + r) with xi = x (mod pb). Clearly S(m + r) consists of just all exten-

sions to mod pm+r of the solution-sets of S(m).

Theorem 1. (i) If (x, b, m) is a solution-set of type A, then it has a unique ex-

tension, (x!, bi, m + 1) to mod pm+1; this extension is also of type A with h = I and

6i = b + 1.

(ii) If (x, b, to) is a solution-set of type B, then (a) if m is odd either (x, b,

to + 1) is the unique extension of (x, b, to) to mod pm+1 or there is no extension to

mod pm+1; (b) if to is even, the extensions to mod pm+1 are just those (x + spb,

b + 1, to + 1 ) for which 0 ^ s < pandf(x + spb) = 0 (mod pm+1).

Proof. For any integ rai s,

(5) f(x + sp6) = /(as) + spbf'(x) + yp26,

for integral v.

(i) If a; is a solution of type A then, by Lemma 1 (i), b = to — I and 26 Sï m + 1 ;

hence, from (5),f(x + sp6) = 0 (mod pm+1) if and only if

(6) P~mf(x) + sp-lf'{x) = 0 (mod p).

Since p|p~/(a;), (6) has a unique solution mod p for s, So say. Let au = x + s0p6;

then the unique extension of (a;, 6, to) to mod pm+1 is clearly (zi, 6i, to + 1).

Further, k = Z, by Lemma 2 (iii) ; hence to + 1 > 2Zi + 1 and so {xi, 6i, m + 1 )

is of type A with 6i = to+1 — Zi = m+1 — Z = 6+l.

(ii) In this case, by Lemma 1 (ii), 6 = [(to + l)/2]. (a) If to is odd, then

6 = (to + 1 )/2;hence6 + Z = (to + 1 )/2 + Z ̂  (to + 1 )/2 + to/2 > m. Therefore
in (5)f(x +spb) = f(x) (mod pm+1). Hence iîf(x) fé 0 (mod pm+1), then (x,b, m)

has no extension to mod pm+1; if f(x) = 0 (mod pm+1) then, since to + 1 ^ 21, x is

a solution of type B mod pm+1 with
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6(to + 1, x) =-   , by Lemma 1 (ii)
¿k

TO +   1~2     '

6(to, x),

since to is odd

i.e., in this case (x, b, m + 1 ) is the unique extension, (b) If to is even, then 6 = to/2.

For any s, x + spb is a solution of type B mod pm, by Lemma 2 (i), i.e.,

I' = l(x + spb) = to/2. If f(x + spb) m 0 (mod pm+1) then

6(to + 1, x + spb) = Max (ïm + * + l~\ ,m+l - A

= Max (^±1 f m + ! _ A

to + 2 ,      m
= —¿j- ' sinceZ   = 2'

i
= 6+1.

I.e., the solution-set mod pm+1 containing x + spb is just (x + sp6, 6 + 1, to + 1).

This completes the proof of Theorem 1.

Theorem 2. // (x, 6, to) is a solution-set of type A then

(7) f{x) + uf'{x) = 0 (mod p2m-21)

has a solution u, unique mod pm~ , and {x + u, 2to — 3Z, 2to — 2Z) is the unique ex-

tension to mod p m~   of (x, 6, to).

Proof. Since (x, 6, to) is a solution-set of type A, to > 2Z. Hence, since pm \f(x)

and p1 || f(x), equation (7) has a solution for u, unique mod p2m~u. Further pm~l | u

since, from (7), uf (x) = 0 (mod pm). By Taylor's theorem,

f(x + u) - /(x) + u/'(x) (modp2m-2!)

^0(modp2m-2!),        by (7).

Therefore x + u is a solution mod p2m~~21 and, since p6 = pm_i | w, x + u 6 (x, 6, to).

By Theorem 1 (i) the solution-set (x, 6, to) has a unique extension (xx,6 + 1,to + 1)

to mod pm+1, also of type A ; by induction it has a unique extension (xm-2i, 6 + to — 2Z,

2to — 2Z) to mod 2to — 2Z. Since x + u is a solution mod p2m~n this concludes the

proof of the theorem.

4. Description of the Algorithm. The solution-sets of an integral polynomial

f(x) mod p"' form a tree with extension as the connective. For example, the solu-

tion-sets oif(x) = (x+l)(x2 — x + 6) (mod 2m) are depicted in Figure 1. We can

construct all the solution-sets by starting with the unique solution-set mod p°,

namely, (0, 0, 0), and calculate the solution-sets mod pm+1 as the extensions of the

solution-sets mod pm. For a solution-set of type A we may construct its extension to

mod pN in about log2 iV steps by the algorithm of Theorem 2. For solution-sets of

type B mod p"' we construct the solution-sets mod pm+1 by means of the criteria of

Theorem 1.
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(0, 0, 0)

(0,1,1)*

I
(2, 2, 2)*

I
(2, 3, 3)*

I
(10,4,4)*

I
(10, 5, 5)*

(42,6,6)*

I
(106, 7, 7)*

(234, 8, 8)*

: i

Fig. 1. Solution-sets of (x + 1) (x2 — x + 6) =0 (mod 2m). The solution-sets of type A

are indicated by *.

5. Interpretation in the p-adic Field. The solutions of f{x) = 0 to arbitrary

high powers of p correspond to the solution of f{x) = 0 in the p-adic field. In this

interpretation a solution-set (x, 6, to) corresponds to an interval in which/(x) is

small in the p-adic valuation; specifically, \f(y)\p = p~m for | y — x \p = p~b. The

relevance of the definition of type of solution-sets is indicated by Theorem 1. If

(x, 6, to) is a solution-set of type A then, by induction of Theorem 1 (i), there is

a unique solution y of f(y) = 0 in | y — x \p = p~b. On the other hand, if (x, 6, to)

is a solution-set of type B then although \f{y)\p is "small" in the range | y — x \p ^ p~6

there may be no solutions of f{y) = 0 in this range, or one or more solutions. The-

orem 2 exhibits the operation of the Newton-Raphson algorithm. The computation

of —f{x)/f (x) corresponds to solving equation (7) to modulus p°°. For computa-

tional purposes we must be satisfied with solving the equation to modulus some suit-

ably high power of p. Restriction of the algorithm to solution-sets of type A both

guarantees that the iteration converges ( in the p-adic topology ) and indicates the

"right" modulus in which to solve equation (7), namely p2m~21. By "right" we mean

that no greater modulus will guarantee a smaller value of | /(x')|j, for the next

iterate x .

From the p-adic interpretation it also follows that there are no type B solutions

for some sufficiently large modulus, unless the rational polynomial f(x) has a re-

peated factor. For if (xn , b, n) is a convergent sequence of type B solution-sets then

I /(x„)|j> S P~n and | f'(xn)\P = p~ = p~"'2. Hence limn xn is a root of both f(x) and

f'(x). Further, the existence of a common root of f(x) and/'(x) in the p-adic field

implies a repeated factor of the rational polynomial/(x) since the two discriminants

are formally the same.

6. The Search for Close-Packed Codes. The existence of a close-packed error-

correcting binary code [2] requires integers x, r with
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(8) /,(*)-ri{i + .+(*) + ••• + (;)}-*.

The algorithm described in §4 was programmed for the ibm 704 to search for solu-

tions of frix) = 0 (mod 2m). For all to, r with 2 g r ^ 20 and 0 g to ^ 139 the least

value of x with

0 g x < 270,

(9)
fr{x) = 0(mod2m)

and

/,(*) ^0(mod2m+1)

was printed and also an indication of whether or not

(10) x < r-2l(m+r-1)M.

Finally it was determined for each value of r that there were no solutions of

fr{x) = 0 (mod 2140) with 0Si< 270. Now if fr(x) = (r!)-2* with OSK 270

»then either k + s = 140 (where 2" || r!) or equations (9) hold with to = k + s.

In the latter case inequality (10) must also be satisfied. For if not, then x = r-2mlr
and hence fr(x) = (x - r)r è rr(2m/r - l)r ^ rr(3-2m/r/4)r = (3r/4)r-2m >

(r!)-2m > (r!)-2*.

The only solutions of (9) and (10) found for 2 ^ r ^ 20 and 2r + 1 < x were

x = 90, r = 2 and x = 23, r = 3. Hence there are no solutions of fT(x) = (r!)-2*

for 2 ^ r g 20 and 0 ^ x < 270 other than

(i) 0 = x g r for arbitrary r; these do not correspond to close-packed codes.

(ii) x = 2r + 1 for arbitrary r; these correspond to the trivial r error-correcting

codes of two code points of length 2r + 1.

(iii) x = 90, r = 2; this does not correspond to a close-packed code as shown in

[1].
(iv) x = 23, r = 3; this corresponds to the Golay-Paige code of 212 code points

of length 23 [1, 3].
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