Mantissa Distributions

By Alan G. Konheim

Let b be an integer, at least 2 , and write each positive real number in the form

$$
\begin{equation*}
x=m b^{c} \tag{1}
\end{equation*}
$$

where m (the mantissa) satisfies $1 / b \leqq m<1$ and c (the characteristic) is an integer. We define the product of mantissas* m_{1} and m_{2} by

$$
m_{1} * m_{2}= \begin{cases}m_{1} m_{2} & \text { if } 1 / b \leqq m_{1} m_{2}<1 \tag{2}\\ b m_{1} m_{2} & \text { if } 1 / b^{2} \leqq m_{1} m_{2}<1 / b\end{cases}
$$

Now suppose that M_{1} and M_{2} are independent, identically distributed random variables, each taking on values in the interval $[1 / b, 1)$ such that

$$
\begin{equation*}
\operatorname{Pr}\left(M_{1} * M_{2} \leqq x\right)=\operatorname{Pr}\left(M_{1} \leqq x\right) \tag{3}
\end{equation*}
$$

What are all of the possible choices for the distribution function of M_{1} ? The answer is provided by the following

Theorem. $\operatorname{Pr}\left(M_{1} \leqq x\right)=F_{n}(x)$ or $F_{\infty}(x)(n=1,2, \cdots)$, where
(4)

$$
F_{n}(x)=\left\{\begin{array}{cl}
0 & \text { if }-\infty<x<b^{-1} \\
1 / n & \text { if } b^{-1} \leqq x<b^{-1+(1 / n)} \\
2 / n & \text { if } b^{-1+(1 / n)} \leqq x<b^{-1+(2 / n)} \\
\vdots & \\
1 & \text { if } b^{-1} \leqq x<\infty
\end{array}\right.
$$

$$
=\left\{\begin{array}{l}
0 \quad \text { if }-\infty<x<b^{-1}, \dagger \\
1+1 / n\left[n \frac{\log x}{\log b}+1\right] \quad \text { if } b^{-1} \leqq x<1 \\
1 \quad \text { if } 1 \leqq x<\infty, \quad n=1,2, \cdots
\end{array}\right.
$$

and

$$
F_{\infty}(x)=\left\{\begin{array}{l}
0 \quad \text { if }-\infty<x<b^{-1} \tag{5}\\
1+\frac{\log x}{\log b}=\int_{1 / b}^{x} \frac{d u}{u \log b} \quad \text { if } b^{-1} \leqq x<1 \\
1 \quad \text { if } 1 \leqq x<\infty
\end{array}\right.
$$

Proof. We will write $M_{i}=b^{-\boldsymbol{\theta}_{i}}(i=1,2)$, where Θ_{1} and Θ_{2} are independent, indentically distributed random variables, taking on values in (0,1]. Note that

$$
M_{1} * M_{2}=b^{-\left(\boldsymbol{\theta}_{1} \dot{+} \boldsymbol{\theta}_{2}\right)}
$$

Received June 22, 1964.

* If m_{i} is the mantissa of x_{i} then $m_{1} * m_{2}$ is the mantissa of $x_{1} x_{2}$.
\dagger [] denotes 'the integer part of.'
where $\dot{+}$ denotes addition modulo one. Thus (3) is equivalent to requiring that $\Theta_{1} \dot{+} \Theta_{2}$ and Θ_{1} have the same distribution. If we set

$$
\phi(n)=E\left\{e^{2 \pi i n \theta_{1}}\right\}=\int_{0}^{1} e^{2 \pi i n \theta_{1}} d F_{\mathbf{\theta}_{1}}\left(\theta_{1}\right)
$$

then (3) and the independence of Θ_{1}, Θ_{2} imply

$$
\phi(n)=E\left\{e^{2 \pi i n\left(\boldsymbol{\theta}_{1}+\boldsymbol{\theta}_{2}\right)}\right\}=E\left\{e^{2 \pi i n\left(\boldsymbol{\theta}_{1}+\boldsymbol{\theta}_{2}\right)}\right\}=\phi^{2}(n)
$$

so that $\phi(n)=0$ or 1 . Certainly $\phi(0)=1$. There are two cases to be examined.
Case 1. $\phi(n)=0$ for all $n \neq 0$.
It follows from the uniqueness theorem for Fourier-Stieltjes series that $d F_{\boldsymbol{\theta}_{1}}\left(d \theta_{1}\right)=d \theta_{1}$ and hence $\operatorname{Pr}\left(M_{1} \leqq x\right)=F_{\infty}(x)$.

Case 2. $\phi(n)=1$ for some $n \neq 0$.
Let m be the smallest positive integer such that $\phi(m)=1$. Then

$$
0=\int_{0}^{1}\left(1-e^{2 \pi i m \theta_{1}}\right) d F_{\mathbf{\theta}_{1}}\left(\theta_{1}\right)=\int_{0}^{1}\left(1-\cos 2 \pi m \theta_{1}\right) d F_{\mathbf{\theta}_{1}}\left(\theta_{1}\right)
$$

It follows that $F_{\boldsymbol{\theta}_{1}}$ is a 'step function' with points of discontinuity at $\theta_{k}=k / m$ $(k=1,2, \cdots, m)$ and, hence, $\phi(n+m)=\phi(n)(n=0, \pm 1, \pm 2, \cdots)$. We assert that $\phi(n)=1$ if and only if $n=k m$ for some integer k; for if $\phi(n)=1$ with $k m<n<(k+1) m$ then $\phi(n-k m)=\phi(n)=1$ while $0<n-k m<m$ contradicting the minimality of m. The uniqueness theorem for Fourier-Stieltjes series now shows that $\operatorname{Pr}\left(M_{1} \leqq x\right)=F_{m}(x)$.

I should like to acknowledge with thanks several suggestions made by Mr. Benjamin Weiss.

Thomas J. Watson Research Center
International Business Machines Corporation
Yorktown Heights, New York

New Primes of the Form $\boldsymbol{n}^{4}+1$

By A. Gloden

This note presents some results of a continuation of the author's systematic factorization of integers of the form $n^{4}+1[1]$.

An electronic computer at l'Institut Blaise Pascal in Paris has been used to find solutions of the congruence $x^{4}+1 \equiv 0(\bmod p)$ for all primes of the form $8 k+1$ in the interval $10^{6}<p<4 \cdot 10^{6}$, thereby extending the previous range of such tables listed in [1].

With the aid of these tables, the complete factorization of $n^{4}+1$ has now been effected for all even values of n less than 2040 and for all odd values less than 2397.

Thus, the primality of $\frac{1}{2}\left(n^{4}+1\right)$ has been established for the following 116 values of n :

Received February 25, 1963. Revised August 2, 1963.

