Mantissa Distributions

By Alan G. Konheim

Let b be an integer, at least 2, and write each positive real number in the form (1) $x = mb^{c}$,

where m (the mantissa) satisfies $1/b \leq m < 1$ and c (the characteristic) is an integer. We define the product of mantissas* m_1 and m_2 by

(2)
$$m_1 * m_2 = \begin{cases} m_1 m_2 & \text{if } 1/b \leq m_1 m_2 < 1, \\ b m_1 m_2 & \text{if } 1/b^2 \leq m_1 m_2 < 1/b. \end{cases}$$

Now suppose that M_1 and M_2 are independent, identically distributed random variables, each taking on values in the interval [1/b, 1) such that

(3)
$$\Pr(M_1 * M_2 \leq x) = \Pr(M_1 \leq x).$$

What are all of the possible choices for the distribution function of M_1 ? The answer is provided by the following

THEOREM.
$$Pr(M_1 \leq x) = F_n(x)$$
 or $F_{\infty}(x)$ $(n = 1, 2, \dots)$, where

(4)

$$F_{n}(x) = \begin{cases} 0 & if - \infty < x < b^{-1}, \\ 1/n & if b^{-1} \leq x < b^{-1+(1/n)}, \\ 2/n & if b^{-1} \leq x < b^{-1+(2/n)}, \\ \vdots & & \\ 1 & if b^{-1} \leq x < \infty, \\ 1 & if b^{-1} \leq x < \infty, \\ 1 & if - \infty < x < b^{-1}, \\ 1 + 1/n \left[n \frac{\log x}{\log b} + 1 \right] & if b^{-1} \leq x < 1, \\ 1 & if 1 \leq x < \infty, \quad n = 1, 2, \cdots, \end{cases}$$

and

(5)
$$F_{\infty}(x) = \begin{cases} 0 & if - \infty < x < b^{-1}, \\ 1 + \frac{\log x}{\log b} = \int_{1/b}^{x} \frac{du}{u \log b} & if b^{-1} \leq x < 1, \\ 1 & if 1 \leq x < \infty. \end{cases}$$

Proof. We will write $M_i = b^{-\Theta_i}$ (i = 1, 2), where Θ_1 and Θ_2 are independent, indentically distributed random variables, taking on values in (0, 1]. Note that

$$M_1 * M_2 = b^{-(\Theta_1 + \Theta_2)},$$

Received June 22, 1964.

^{*} If m_i is the mantissa of x_i then $m_1 * m_2$ is the mantissa of $x_1 x_2$.

^{†[]} denotes 'the integer part of.'

where $\dot{+}$ denotes addition modulo one. Thus (3) is equivalent to requiring that $\Theta_1 + \Theta_2$ and Θ_1 have the same distribution. If we set

$$\phi(n) = E\{e^{2\pi i n \Theta_1}\} = \int_0^1 e^{2\pi i n \theta_1} dF_{\Theta_1}(\theta_1),$$

then (3) and the independence of Θ_1 , Θ_2 imply

$$\phi(n) = E\{e^{2\pi i n(\Theta_1 + \Theta_2)}\} = E\{e^{2\pi i n(\Theta_1 + \Theta_2)}\} = \phi^2(n)$$

so that $\phi(n) = 0$ or 1. Certainly $\phi(0) = 1$. There are two cases to be examined. Case 1. $\phi(n) = 0$ for all $n \neq 0$.

It follows from the uniqueness theorem for Fourier-Stieltjes series that $dF_{\Theta_1}(d\theta_1) = d\theta_1$ and hence $\Pr(M_1 \leq x) = F_{\infty}(x)$.

Case 2. $\phi(n) = 1$ for some $n \neq 0$.

Let m be the smallest positive integer such that $\phi(m) = 1$. Then

$$0 = \int_0^1 (1 - e^{2\pi i m \theta_1}) dF_{\Theta_1}(\theta_1) = \int_0^1 (1 - \cos 2\pi m \theta_1) dF_{\Theta_1}(\theta_1).$$

It follows that F_{Θ_1} is a 'step function' with points of discontinuity at $\theta_k = k/m$ $(k = 1, 2, \dots, m)$ and, hence, $\phi(n + m) = \phi(n)$ $(n = 0, \pm 1, \pm 2, \dots)$. We assert that $\phi(n) = 1$ if and only if n = km for some integer k; for if $\phi(n) = 1$ with km < n < (k + 1)m then $\phi(n - km) = \phi(n) = 1$ while 0 < n - km < m contradicting the minimality of m. The uniqueness theorem for Fourier-Stieltjes series now shows that $\Pr(M_1 \leq x) = F_m(x)$.

I should like to acknowledge with thanks several suggestions made by Mr. Benjamin Weiss.

Thomas J. Watson Research Center International Business Machines Corporation Yorktown Heights, New York

New Primes of the Form $n^4 + 1$

By A. Gloden

This note presents some results of a continuation of the author's systematic factorization of integers of the form $n^4 + 1$ [1].

An electronic computer at l'Institut Blaise Pascal in Paris has been used to find solutions of the congruence $x^4 + 1 \equiv 0 \pmod{p}$ for all primes of the form 8k + 1 in the interval $10^6 , thereby extending the previous range of such tables listed in [1].$

With the aid of these tables, the complete factorization of $n^4 + 1$ has now been effected for all even values of n less than 2040 and for all odd values less than 2397.

Thus, the primality of $\frac{1}{2}(n^4 + 1)$ has been established for the following 116 values of n:

١

Received February 25, 1963. Revised August 2, 1963.