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Mantissa Distributions

By Alan G. Konheim

Let o be an integer, at least 2, and write each positive real number in the form

(1) x = mbc,

where m (the mantissa) satisfies 1/6 ^ m < 1 and c (the characteristic) is an integer.

We define the product of mantissas* mi and m2 by

(2) mi*m2 =
\mim2     if 1/6 ^ mim2 < 1,

[bmim2   if 1/62 ^ mim2 < 1/6.

Now suppose that Mi and M2 are independent, identically distributed random

variables, each taking on values in the interval [1/6, 1 ) such that

(3) Pr(Mi*i¥2 ái) = Pr(M! ^ x).

What are all of the possible choices for the distribution function of M i ? The answer

is provided by the following

Theorem. Pr(Afi ^i) = F„(x) or F«,(x) (n = 1, 2, • • • ), where

0     if — oo < x < b~\

1/n   ifb~x ^x<b-1+Wn},

Fn(x)={

(4)

2/n   if 6
-l+(l/n) Ú x < 6 -l+(2/n)

[   1       ifb"1 ^ X <   00,

' o iy - oo < x < 6-1,t

1   ifl á x <«,      n = 1,2, ••• ,

and

(5) /¡•«GO H

0      l/ — »   <  J  <   ¡)   ',

log x       [x      du
1 +

Jl/hlog 6      Ji/6 m log 6

1     if 1 ̂  X <   <=0

<f 6_1 = x < 1,

Proof. We will write Mi = 6    ' (*' = 1, 2), where @i and ®2 are independent,

indentically distributed random variables, taking on values in (0, 1], Note that

Mi*M2 = 6
-(ei+e2)
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* If m¡ is the mantissa of Xi then mi* m2 is the mantissa of ziXs .

t [ ] denotes 'the integer part of.'
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where + denotes addition modulo one. Thus (3) is equivalent to requiring that

©i -j- @2 and ©i have the same distribution. If we set

<t>(n) = E{eMnS>\ =  f eUMl dF9l(eù,
Jo

then (3) and the independence of ©i, @2 imply

<t>(n) = #{e2liniei+82)} = E{e2*in<-*1**1)) = <p2(n)

so that <l>(n) = 0 or 1. Certainly 0(0) = 1. There are two cases to be examined.

Case 1. <t>(n) = 0 for all B^O.

It follows from the uniqueness theorem for Fourier-Stieltjes series that

dFe^ddi) = d0i and hence Pr(Mi g x) = Fn(x).

Case 2. <p(n) — 1 for some n ^ 0.

Let m be the smallest positive integer such that 4>(m) = 1. Then

0 =  [   (1 - e2rimei) dFe.idi) =  Í   (1 - cos 27rm0i) dFei(6i).
Jo Jo

It follows that Fej is a 'step function' with points of discontinuity at 6k = k/m

(k = 1, 2, • ■ • , m) and, hence, <p(n + m) = <t>(n) (n = 0, ±1, ±2, • • • ). We

assert that <t>(n) = 1 if and only if n = km for some integer k; for if <j>(n) = 1 with

km < n < (k + l)m then d>(n — km) = <j>(n) = 1 while 0 < n — km < m con-

tradicting the minimality of m. The uniqueness theorem for Fourier-Stieltjes series

now shows that Pr(ilfi ^ x) = Fm(x).
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New Primes of the Form n4 + 1

By A. Gloden

This note presents some results of a continuation of the author's systematic

factorization of integers of the form n  + 1 [1].

An electronic computer at l'Institut Blaise Pascal in Paris has been used to find

solutions of the congruence x* + 1 s 0 (mod p) for all primes of the form 8fc + 1

in the interval 106 < p < 4 • 106, thereby extending the previous range of such

tables listed in [1].

With the aid of these tables, the complete factorization of n4 + 1 has now been

effected for all even values of n less than 2040 and for all odd values less than 2397.

Thus, the primality of §(n4 + 1) has been established for the following 116

values of n:
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