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1. Introduction. Let f(x) be a member of the class of functions

" n]X\ j Xm\

(1.1)
= i/(z) 1/ € Cn ' [x\, xm],f(n l) absolutely continuous, f(n) £L2(xi, xm)\.

Further, let/(:r¿) = /,■, i = 1, • • -, m. We shall refer to the points, (x¿,/,), as the

fixed points. We wish to find an optimal approximation to the integral

(1.2) F(J) =  /     f{x) dx.

We shall assume a bound M on the nth derivative of / of the form,

(1.3) í"[/%)]2ágM.

This is a pseudonorm which may be derived from the bilinear form

rxm

(1.4) [f,g] =        fn)(x)gin)(x)dx.

Following Golomb and Weinberger [1], we introduce a new bilinear form

(1.5) (f,g) = [f,g]+ ¿/(*i)flf(*J.¿=i

In this way we obtain a true norm since the quadratic form, (/, /), is positive defi-

nite if m ^ n. If m is not greater than or equal to n we cannot form a norm in this

way. Now we may write

(1.6) (/,/) úr2 = M+ £/,-
2

We may now express any function / which passes through the fixed points as

U.7) 'f=i + W^t+m,

where ú is the function of smallest norm through the fixed points, y is the function

such that (y, y) — 1 and y{x¿) = 0, i = 1, • • • , m,

(1.8) F(y) = sup{\F(v)\\(v,v) = í;v(xí) = 0, i = 1, ■ ■ ■ , m},

and w is the remainder. Golomb and Weinberger [1] have shown that (w, y) = 0,

(m, w) — 0 and (#, w) = 0. Thus

(..9) /a a/) è (*,«> + (5%py
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or

(1.10)    F(u) - F{y){rl - («, û))w g F(f) è F'(«) + F'(y)(r2 - (a, û))1/2.

Thus the optimal approximation to / is ü. This does not depend on the particular

linear functional, F, we wish to approximate.

2. Determination of w and y. The function, U, which minimizes

(2.1) a/) = r \fn\x)f dx+¿a*,-)
'»l ¿-1

and passes through the fixed points is the function which minimizes the integral

in (2.1) as the sum is a constant for any such function. This problem was solved

in [2] for the case n = 2 and later in [3] for any n. They show that « is the spline

function of order 2n — 1. A spline function is defined as follows:

(a) The spline of order r, Sr, is a polynomial of degree r in the intervals

(-°°,Zl), 1*1,«»).  •••  , [Xm,   oo).

' (b) Sr has continuous derivatives through the (r — l)st. Thus for any / in

Fn[xi, xm] passing through the fixed points the spline function £2n_i is the optimal

approximant for computing the values of linear functionals. The best approxima-

tion to the integral (1.2) is the integral of £2n-i. It is shown in [4] that this inte-

gral is the "best integral" of Sard [5], [6], [7].

The function y has the properties (y, y) = 1 and #(x.) = 0, i = 1, • • • , m.

Of all functions y with these properties,

(2.2), F(y)^\F(y)\.

This problem was solved by Sard [5]. For the best integration formulas,

(2.3) \]    f{x)dx-Y{Aif{xi)   â MW\J     K2dx\   ,

where K is the Peano kernel. Thus

(2.4) J    y dx = \ j     K*dx\     = y/K2.

For the functions y, M = 1 and y(xi) = 0. Thus the maximum value F(y) can

take on is \/Kz. The kernel K2 was shown [8], [4] to be identical with the mono-

spline whose roots are its knots xi, • ■ • , xm and for which x\ and xm are roots of

order 2n. The monospline for this problem is

<2-5» * V*' - (j^ \^=¿^ + &.->(*>] -

Note that

(2.6) F{y) = VK2.

Both û and y contain m + n — 1 unknown coefficients. These may be determined

by the m relations w(a\) = /¿ and y(xt) = 0 and the n — 1 relations

û(,\xn) = y{i\xm) =0,       i = n, • • • , 2n - 2.
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3. Results. We may compute the coefficients of the spline function ú by solving

a system of linear equations. Let us define a matrix,

(3.1) l_HT    oj
where the superscript T denotes transposition. D is an (w — l)-by-(m — 1) order

matrix with

(3.2) Da = (zm+i_¡ — xj)%n'1,

where the subscript + is defined as follows :

™ «-{S  III
(3.4) La = (xm+1-i — £i)"~J,

and

■" ij   ==    \Xm %i) j
I

and 0 is an (n — l)-by-(w — 1) order null matrix. Let us further define vectors

(3.6)

(3.7)

where

(3.8)

(3.9)

and

(3.10)

F, F„

T

f L   =

fm   — f\

J* - /J
(xm — Xi)2n/2n

_(a;2 — Xi) "/2n_

in  =

P*  =

fm   —  f\

_Jm Jm—1_

(i» — zi)2n/2n

(«m — xm-i)2"/2n_

d =
(xm — xi)n/n

\_{xm — xi) /2_

In terms of these quantities the coefficients in ú are

(3.11) a,- = [C_1-FL]i,       i = 1, ■■■ ,n + m - 2,

where a< is the coefficient of the term (x — z»)+n_1 in ü when i < m, and it is the

coefficient of the term (x — x\)m+n~'~l for i ^ m. Thus the best integral of/ is

(3.12) F(ü) = T,T-CTI.Fi + (s„ - *i)/i

or, by symmetry,

(3.13) F(fi) = F/-CT_,-TL + (xm - xi)fm .
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The maximum error bound for this integral is, by (1.10), (1.5) and (1.6),

,„„. £bMt = F(y)(r2 - (fi,fi))1/2

(3.14)
= ((M- [fi, û])K2)1/2.

We may compute [w, ü] by integration by parts :

fi(n)fi(n) dx
-1

= (-1)"-1 /    fi^-Vdt
(3.15) •'«i

m-l

= (-l)"-1(2n- 1)|£ *(/„-/,)

= (-l)"-1(2n - 1)!FHT.C-1-Ft.

Since y is a monospline with the same knots as the spline fi we may compute its

coefficients in terms of the matrix C also. From (2.5) and the fact that «(#<) = 0

and Xi and xm are zeros of multiplicity 2n, we may compute the coefficients in

S2n_i of (2.5). Then upon integrating y we obtain

1/2

4. Discussion. We may obtain the coefficients for the best integration formulas

by noticing that the functional values enter (3.12) linearly. Thus we may write

* m

(4.1)" F(fi) = £W<,
i-1

where

(4.2) Wm+l-< = (T/-C"1),,       i - 1, • • • , m - 1,

and

m

(4.3) TTi = z» -xi- ETT(.
t-2

Similar relations follow from (3.13).
When m = n, the best integration formulas are the same as those obtained by

integrating the Lagrange interpolation coefficient. In this case [fi, fi] = 0 and so

the error bound is just the usual bound obtained from the Peano kernel. When

[fi, fi] t£ 0 the error bound (3.14) is better than the bound used by Sard [5], [6],

[7], for these formulas.

In this paper we have discussed the error bound for integration. The spline func-

tion fi is the optimal approximation for any function in Fn\x\, xm] which passes

through the fixed points and may be used for evaluating any linear functional.

To find the optimal error bound it is only necessary to compute the corresponding

y. In this way we may find optimal error bounds for interpolation and differentiation.

This will be discussed further in a future paper.
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