
Estimates of Weights in Gauss-Type Quadrature

By E. L. Whitney

1. Introduction. It may readily be verified that the angular distance

A0 = Bi+i,n — Oi.n between the zeros 6i¡n of the Legendre polynomial Pn(cos0) in

cos 6 is roughly constant for large n. From the quadrature formula itself the weights

may be estimated to a corresponding degree of accuracy. Direct asymptotic esti-

mates of the weights corresponding to cosö = 0 in the (2n + 1)-point Gaussian

quadrature are all available from Stirling's formula in the cases considered below.

We here replace the P„ by C„ , the Gegenbauer polynomials (effectively, tesseral

harmonics or ultraspherical polynomials) of order X ~> 0, and the Hn in the single

limiting set of Hermite polynomials. Explicit formulas are derived: but the esti-

mates for the general weights have a precision limited by the corresponding pre-

cision of the estimates of the zeros.

2. The Quadrature Formula. The Lagrange interpolation formula

ax)=e P,r(*)/(*'},, p(*>-o,
(1) i    PÍXí)ÍX  -   Xi)

P'ix,) ^0, i = 1,2, ••• ,n,

algebraically valid for polynomials / of degree v < n, the degree of P, has a rather

limited direct use in polynomial approximation theory. Combined with various re-

strictions on P to be in a basis of a set of polynomials with suitable properties, it

becomes more useful.

Let P*ix) be of degree n + 1, so that P*ix) = axPix) — bPix) — cP*ix) for

constants a, b, and c, P* representing a polynomial of degree v < n. We set

vt    i\       v(,    \      P*ix)Pit) - P*it)Pjx)Kix, t) = Kit, x) =-,
x — t

a polynomial of degree n in x for each /, so that

Kix, t) = aPix)Pit) + cK*ix, t),

K* being defined in terms of P and P* exactly as K is determined by P* and P. In

particular, Kix, x) = Pix)P \x) — P*ix)P ix); and (1) is modified to become

A suitable normalization with respect to a fixed integrable weight function w, es-

sentially positive over the interval / of integration, is

/ Kix, Xi)wix) dx = 1,

so that (2) becomes

(3) [fix)wix)dx = ¿ZfixùWi,
Jl i
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where

(4) Wi = -=
Kixi , Xi)

is the formula for the weights.

From the above,

n

Knix, t) = £ a/pjix)pjit),

the indices/ indicating the degrees of the polynomials p¡. Referring to (1), for

example, we set

n-l
—>

^0
Pnit) ±= kntn — £ Cj,npiit),       n = 1,2, 3,

where

poit) = fco >0, [ wit) dt=±-2,
Jr ko'

(5) j pnit)piit)wit) dt = 0, 0 á / < n,

and

liPniDfwiDdt   =

The inductive definition is complete if we assume fc„ > 0. Indeed, for an arbitrary

polynomial P,

n n

(5') Pit)  =  £ ayfc/ =  £ aj.nPiit),
3=0 i-0

the a,,„ being determined uniquely by the a, and k¡, where // kjt'pjit)wit) dt = 1,

so that

fc„ fcn-i v^2
(6) xpnix) = T--5- p„+i(a;) + 6„p„(x) + -^— p„-i(x) + £ bjtnpjix)

n^n+l *Cn i=-0

in any case, with bj,n = 0 by (5). Then
n

Knix, t)   =   £ pyUJPiU)
J-0

_ _fcn_ p»+i(a:)pn(<) — pn(x)pn+i(Q ,

fcn+l ^  —  í

(7) Knix,x) = £ {py(x)î2
»'-o

= TT^- ÍPn+i(a;)pn(a;) — Pn'(z)p,,+i(a:)}

- ^ {JUx.OíVo dt,

these being the standard Christoffel formulae (see [1]).
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If / is of degree 2n — 1 or less, the quotient Q of/ by p„ is uniquely determined,

with remainder p*(<) = fit) — Qil)pnit) of degree n — 1 or less. Then, if p„(z¿) = 0,

n being fixed,

J p*it)wit) dt = I f(t)wit) dt,   by (5),   and

(8)

[ fit)wit)dt = ¿ZWifixt),
Jl i

as before. (The formulae (7) guarantee the separation of n distinct zeros in /.)

3. Sums of Squares. The Cesàro-one sums

1 "_1
o-nix, t) = - £ Kjix, t)

n >=o

are expressed in the way suggested by Christoffcl's method as follows

«-i
, .\2    ,     .\

n
k

ix — t)2o-rXx, t) = £ -— ib, — bj+i){pj+iix)piit) + pj+iit)pjix)\
j=0 Kj+i

(9) + y-   lPn+lix)pn-!Ít)  + Pn-lix)pn+lit) )
Kn+1

- 2 (^)V(.)f(i) + 2§ vMvM) {(£)' - (£)"},

where bs = // í{py(í)|2w(í) dt and fc_i = 0.
Beginning with fc2(6i — b0)/ki = ci,2, we see that bj = bj+1 for all/ if and only

if w is symmetric over /. After a translation, we may assume in this case that the

Piit) are alternately even and odd polynomials. We assume that this condition holds

in the sequel.

Let

so that

Aj'U) = -y^Pi-iix) - y-^Pi+iix),
Kj Kj+i

4 -r^ Pi+lix)pj-iix)   =  X2ip;U))2  -   \S.jix)}''
fci4

Then, for suitable constants c„ , we set

Lnix) = ic2 — x2){pnix)\2 + {A„(a;)}2

(10)

To make this formulation of sums of squares useful, the weight function w is further

restricted.

4. Gegenbauer Polynomials. See [1].

The expansion of p_2X = (1 — 2rt + r2)- as a power series in r,

(1 -rzr\l - rz)~x = £C/(0r,>
y=o
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subject to

z + 2 = 2t = 2 cos 0,       «2=1,        0 g r < 1,

determines the Gegenbauer polynomials C„ of order X > 0. If y is any successively

differentiable function of p,

r
2 5j/      dry =   2 dj/

ÓV2 ̂  3i2   ~     dp2 '

In the above case, y = p 2X, so d2y/dp2 + ((2X + l)/p)idy/dp) = 0, and so

if*2dJ + (2X + l)rd/ + (1 - Í2) f| = (2A + l)ig.
âr ôr ai2 ai

Comparing coefficients in the power series, we have

(11) !{(1 - iy+"2^M = -nin + 2XX1 - Í2)X-1/2C„X(Í).

Multiplying by C/(<)» alternating the indices n and/, and subtracting, then inte-

grating from t = — 1 to t = 1, we have

C/(0   =  VÄ/Py(f),

the {pj} being orthogonal (with property (5)) with respect to w,

wit) = (1 - i2)x-J/2.

Here,

r+i

£   iC>it)}2wit) dt = hi,

easily calculated explicitly. From the definition above, using the series and the

binomial theorem,

n    A + 3 - l\ A + » - 3 - l\ _;
C'„x (cos 0) = £ cos in - 2/0),

\     J      / \      w - J

so

(2X + n - 1\

),       -1 = « S 1,

if X > 0.
We may make direct use of the Christoffel formulae (7), comparison of terms in a

linear expansion, and induction, to obtain

in + 2X - 1\

2hnko\n + X) = xf 1,

fey-n(n + 2X - 1)

(n + X)(n - 1 + X) '
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and

{2\ + n - 1>

(12) X!222X(n + X)ÍC7„X(Í)}2 = ir[ ) X(2X)!{p„(i)|2

n

Also,

so that

^p»-i(0) = -^pn+i(0),

(13) lim{p2n(0)}2 = -

and

2X2!

the   relative   errors   in   the   corresponding   approximations   being   of  (order)

0(1/\n + X)2) uniformly in n for fixed X by Stirling's formula.

We set 2 = (1 - t2fl2pnit), and find

^=(n + X)(l-<2)X/2-1A„W,

using (6) and (11). If

LniD   -   {Pn(0i2(l   -   t2)   +   ÍA„(0¡2,

(11) becomes

(14) Í [LMH - I2)"'1} = -2X(1~X) (1 - ¿2)X-2p„(í)An(í).
dt n + X

From the above quadratic relation, and (6),

2V(1 - í2)|p„«)An(í)l á Ln(t).

Differentiating the logarithm of Ln , and integrating, we have

i    /¿»O n     ji\k-i\ / l^d - x)|       \t\ . .

In particular, lim».. L„(í)(l - <2)X_1 = 2/tt, -1 < t < 1.

However, relation (10) now reads as follows:

r m = _2y x(l-X){py(Q}2_X(l-X){pn(Qj2

"W " y=S (/ - 1 + X)(/ + X)(/ + 1 + X)      (n + X - l)(n + X) '

whence

Ln(í)(l   -   i2)'"'   =    ÍPn(¿)!2(l   -   i')'   +   ¡A„(i))2(l   -   t2)"-1

_   2 X(l   -X){pn(Q}2(l   -<2)X-'

(15) 7T (n + X)(n + X + 1)

2   E
X(l   -X){py(¿)¡2(l   -i2)'"'

¿?+i (/ - 1 + X)(/ + X)(/ + 1 + X)
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The maximum of z2 = {p„(i))2(l — I2)  in any subinterval of / with endpoints

t = Xi or t = ±1, corresponds only to A„(<) = 0, so that if

in + \)in + X + 1)(1 - Í2) è |X(1 ~X)|,
€

p„(í)(i-í2)xU±e) <?,

and, otherwise,

Pn(D(l   -   t2)"

is uniformly bounded, by (12) and (13).

On the other hand, if p„(x.) = 0,

X 1 - X?    j-n+l (j -  1 + A)0 + X)0 + 1 + X) '

where

\Piix)}2a - x2)x       ^ i + tjY   _\Pi\X}\ u — X )_

y-n+i (/ - 1 + \)ij + X)(/ + 1 + X) " Tin + X)2

and lim„.M e„'  =  0, if | ±1  + x | > 6, any fixed positive number. That is, if

| ±1 + Xi | > 8,

/1Rs 1   _v-(v    „ ^ _ An(x¿)pn/(a:,) _ n + X {Anjxj)}2

Ubj       rr M 'i;       2 2~ i - x,2 '

and for such zeros x = Xi,

ill) W^^il-x2)*,

with a relative-error estimate

|X(1 -x)|

(18) (n + X)2(l - xfl

for both upper and lower bounds.

If n is an odd number, and x, = 0, we easily compute

1     _n + \f1      X(l - X)      X(l - X)2  |
Ifi jt     i     '        2n2 n3

using Stirling's formula, for the corresponding median weight Wt. The precision

of the estimate here is easily controlled; but in the general case the sums of squares

seem difficult to handle with precision.

5. Spacing of Zeros. Let v = Pn'(0/Pn(0- Using (11), we find

(1 _ t2) J = (2X + l)tv - nin + 2X) - (1 - ¿V.
dt

Combining this with the Christoffel formulae, using induction and the result

| p»(0 | è P»(l), we have
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x = xn being the zero of pnit) nearest t = 1. Since (p„(x„) — p„(l))/(x„ — 1) <

Pn'(l), we have x„ < 1 - (2X + l)/(«(» + 2X)).

In general, if we set t = sin <p, the equivalent differential relation

.{arCta4pn(0VU%]d<*>

)2

n + X      L„(<)

gives us the necessary information concerning the spacing of the zeros. We have

where x,- = sin <pi and Ac¿>¿ = <pi+i — <¿>¿.

6. Hermite Polynomials. From the defining formulas, we easily obtain

/ rl\m A + m - l\

\It)   ÍC"X(Í)! = 2"( JC^-Zit)

by induction on m. Among other results, relations between the tesseral harmonics of

Legendre,

Pnim\t)=   (l-íT/2(|T{P»(í)},

Pnit) = Cn\t)    for   \ = i

and the Gegenbauer polynomials follow. Formally, the trigonometric basis is given

by X = 0 and X = 1.

If t2 = s2/2X, s being fixed, and X —» «, we have

u>(0 -> e"82'2.

For the bounded n and s,

Cn\t)^Hnis),   if   X-+00,

the corresponding Hermite polynomial.

Let

| {//„(i)e-,2/2} = -Hn+iit)e-'212,       Hoit) = 1,

for n = 0, 1, 2, ••• . Then

£T„'(0 = nHn_iit),

by Leibnitz' rule for successive differentiation. It follows immediately that

Hnix) -   E  (  )(-im*B-2'
i«»+l)/2 W/
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for a single set of coefficients {C¡}. Since

tHnit) = nHn-iit) + Hn+iit)

from the pair of relations given above, we have the Christoffel formulae

„f    .*      y Hiix)Hjit)      Hn+iix)Hnjt) - Hnjx)Hn+iit)
tlnKX, t) = ¿-i- = -r,-re-

y-o 3\ n\ix - t)

and

u (      \ - V H*M - i" + DBnix) - nHn+ijx)Hn-iix)
HnkX,X)   -   Zj —J-{ ^

-'vkC™*'^*-
To arrive at the last result, we make use of

f f e-(l2+i2,/2 dxdt = 2r,
■/—ao   J—oo

or the limits given above. Since

V(2x)e-l2/2 =  f e-í2/2+,Iíí" di
J-ao

we have

V(27r)//n(x)e-xi/2 = (-IT /"V"/l+i,,f «ft.
J-00

Let 2 = e~>%liHnit), so that

|-e-'"'{«H„(0-iH.«)}

and

Then

so that

di2 2 (•+1-0
(/2)2 - 4 (|Y = 4ne-,2/2//„-1«)//„+i(i),

e-*«/t / g #A*) + I ^2(x)\ = g ///(O)      1 H,'(0) _ 1   r* te-„l2 H2jt) dl
\i-o     /! 2     n!    /      y-o     /! 2     »! 2 J0 n!

from the Christoffel formula. We do not obtain different results from the formula-

tion of the Cesàro-one sums, in this case. We define

Vn{j-e     j\ 2     n!    J



so that

Then, also,

so here

and
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limL„(0) = a/--

:n(x)<r2'2 = Ln(o) - -L ft^e-'^dt,
2Vn Jo        n\

v„L.(oe--L{(*y + (, + I-Q

lim L„(x)e"
3-2/2 "Vi"

The formula for the weights W, corresponding to //„(x¿) = 0 becomes

yp   = HniXi,Xi)  = VnLnixi),

so

Wl - V 2n *        '

with a relative error estimate

2

2n - 5
if   xt2 < 2(1 + 5).

If we consider the Fourier sine expansion over the interval ia, a -\- ir/k) be-

tween zeros x — a, x = b = a + v/k, of Hnix)e~x ll, we have

-.z'ydt > 0.
Ja   [_ \at /

Now

»'->'■

ney-H-o^-*
so that

b — a >
V(4n + 2 - a2)2> '

Otherwise, dz/dt < 0 if í   ^ 4n + 2. We cannot have 2 = 0 there, since z > 0 if

t —> oo for fixed rc. Then

62 < 4n + 2.
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We may point out that the estimates, for Cesàro-one and related sums, remain

useful in establishing convergence properties of the expansions of functions (e.g.,

of bounded variation) as series of orthogonal polynomials.
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