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Approximate Integration Formulas for Ellipses

By Nancy Lee and A. H. Stroud

1. Introduction. Here we give some approximate integration formulas of the

form

(1)       /(/) - if   -n-l-., ,/(*,y/)„    ■    x, ■    ,x dxdy - £ ¿ifi*. V*),
JJeb Viix - c)2 + y2) Viix 4- c)2 4- y2) ,-i

/QO       a 00 N/    wix, y)fix, y) dxdy ~ J2 Ajixt , yi),
00 J— 00 t=l

Dix,y) exp {-aD2ix, y)]

W(x'y)       Viix - c)2 + y2) Viix + c)2 + y*) '

Dix, y) « Viix - c)2 + y2) + Viix + c)2 4- y2).

Here EB is the interior of the ellipse with foci at (±c, 0), semiminor axis P, and

semimajor axis Vic 4- B2). In wix, y), a is a positive constant. For both of these

integrals we give integration formulas exact for all polynomials of degree %k,

k = 3, 5, 7. These formulas are somewhat similar to formulas given by Hammer and

Stroud [1] for a circle and square and were found by similar methods.
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We have not encountered integrals of the form 7(/) and J(J) in any practical

problem but we believe that approximate integration formulas for these integrals

will be useful since the weight functions in them become infinite at the points

(±c, 0). As a hypothetical example, the formulas we give here might be useful in

problems in chemistry or physics which involve integrals of the form

//    Gix, y) dxdy,
JJek>BB

where Gix, y) is related to the repulsive force on a free particle p due to two fixed

particles located at (±c, 0) under the assumption that the repulsive force on p

becomes infinite as p approaches one of the fixed particles.

By transforming from rectangular to confocal elliptical coordinates, formulas for

the integrals 7(/) and J(/) can also be constructed by combinations of one-dimen-

sional formulas. In this way one can obtain formulas of degree 2h — 1 using h2

points for A = 1, 2, 3, • ■ ■ . Formulas of this type for 7(/) have been discussed by

Page [2] and will not be described here.

2. Description of the Formulas. We give two formulas for each of the degrees

3, 5, 7 for each of the integrals 7(/) and Jif). The formulas are given in terms of the

monomial integrals 7y,t . Here Ii¡k denotes either Iix'yk) or Jix'yk), j, k =

0, 1, 2, • • • .
If at least one of the integers j or k is odd, then

Z(arV) = JixY) = 0.

The values of Iix'yk),j and k both even, are given by

,/>,««       n(2n 4-1   2m 4- l\ v (n\  2»-2*

where

n—1   /       -, \2fc  2fc T}2n— 2fc—1 r> /       ,\B  ïtin 7-
=    A   ÍT   (—!)    C   B Pn.k    ,       (—1)   C    Pn.nL

9n an(B-l)--(n-i)t n\

A = Vic2 + B2),   L = 21oge(^),   Pn,k = (^)-..(2n-f+J).

Here Bir, s) is the beta function r(r)r(s)/r(r 4- s).

Thus 7(1) = xL.
The values oíJix'yk) íorj and k both even are

J(aV)

-.5 -iacT,/2n 4-1   2m 4- l\ v (n\   in~^ta  \-»-* ^ {2m + 2k + l\

In Table 1 we give numerical values of the constants in the formulas for 7(/)

for P == 1, c = 1, and in Table 2 numerical values for/(/) for c = 1, a = 1/4.
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Table 1

Formulas for I if), B 1, c = 1

Formula 3a

u = 1.141174027799650 v = 0.549798291853001
Ai = 1.384458393024340

Formula 3b

u = 0.806931893571098 v = 0.388766100454037
Ai = 1.384458393024340

u = 1.092499536304484
X = 0.627903814268268

Ao = 1.221592995357823

v = 0.803909065610874
X = 1.012197157907448

Ao = 1.221592995357823

m = 1.246009745849288
u2 - 0.780689798095836
vi = 0.895112350759653
v2 = 0.394559771541860
X = 0.900546669274181

ui = 1.271634501705140
W2 = 0.821020360201681
vi = 0.910429182160393
v2 = 0.440808525551630
X = 0.900546669274181

Ao = 0.211469951435905

Formula 5a

Formula 5b

Formula 7a

Ai = 1.191157269603166
n  = 0.657867463793369

A2 = 0.483481509383302

Ai = 0.398360298916025
r, = 0.302513408229517

A 2 = 0.879879994726872

Ai =
A2 =
A8 =
A4 =

0.327108635844816

Formula 7b
A,
A2
A8
A4

v
A6

0.4380935488199Ô1
0.971706127419465
0.163122086390356
0.541777751729327
0.557659666410276

0.366749953216258
1.007804731117124
0.144612593026746
0.489797261280969
0.557659666410276
0.327108635844816

The formulas are :

Formula 3a, 4 points, degree 3 :

Point Coefficient

i±u, 0) Ai

(0, ±v) Ai

2 27 20

J-00

■2 27o2
V    =   -j-

ioo
A, = ^

4  '

Formula 3b, 4 points, degree 3:

(±M, ±v) Ai
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Table 2

Formulas for J if), c = 1, a 0.25

Formula 3a

u = 1.224744871391589 v = 0.707106781186548
Ai = 1.024236695866873

Formula 3b

u = 0.866025403784439 v = 0.500000000000000
Aj = 1.024236695866873

u = 1.243163121016122
X - 0.790569415042095

Ao = 1.566479652502276

v = 1.374368541872554
X = 1.172603939955857

Ao = 1.566479652502276

mi = 1.917739116886260
u2 = 0.934449448785687
vi = 1.854770545973768
Vi = 0.617009547822385
X = 1.244989959798873

A6 =

ui = 1.975911856128909
u2 = 0.955805485502959
»i = 1.901481972888572
v2 = 0.661716141789722
X = 1.244989959798873

Ao = 0.185180735950124

Formula 5a

Formula 5b

Formula 7a

A,
v

As

Ax
v

A2

Ai =
A2 =
A3 =
A4 =

0.098333016116251

Formula 7b

Ai =
A2 =
A, =
A4 =

v =
A6 =

0.810017256208442
1.060660171779821
0.227608154637083

0.147884442718746
0.456435464587638
0.558674561381931

0.054743310430066
1.179794929237429
0.023083772103826
0.594185347729922
1.024695076595960

0.044100110335543
1.159574673340265
0.019625337242702
0.535916870607671
1.024695076595960
0.098333016116251

Formula 5a, 7 points, degree 5 :

(0,0)
(±ti,0)

(±X, ±i»)

Ao

A,

.4 2

2
u   =

Itolo ' ri

Ai =
(72o7o4 —■ Io2I22)

2704(740jI04

72o7o4   —   7o2722

2

At =

X¿ = 1=

^02

722

7o2

2 7o4
1»     =   !"

V02

Ht)   ' 4h
Ao = 7o 2Ai - 4A2 ;

Formula 5b, 7 points, degree 5 :

v   =
I40I0

(0,0)
(o, ±t0

(±x, ±1,)

— T2— 122

Ao

A,

-4 2

Ai
( 74o7o:

Iiolffl

I2oI<& )

2IiaiIioIa\ — 722)

72o722

A2

\2 = {i°
7 22

77o

-^- Ao = 7oo — 2Ai — 4A2
4740
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Formula 7a, 12 points, degree 7 :

(±mi,0) Ai

(±«2,0) A2

(0, ±i>i) A3

(0, ±î>2) A4

(±X, ±i?) Ab

742 2 724 Â 7 22,2 ¿42 2_^M A      —
A    —   ■=- , V    —  J- ' -^5   —

7m 722 4Ii2Iu

Mi2, m22 are roots of u + CiU2 + Co — 0, where

co - [[/« - 4A6X2][760 - 4A6X6] - [740 - 4A6X4]2]/7)1,

ci = [[720 - 4A6X2][74o - 4A6X4] - fcj[760 - 4A6X6]]/-Oi,

Di = HU - 4A6X4] - [7,0 - 4A6X2]2,

Ai = [/» - 4A6X2 - fciM22]/[2(M!2 - M22)],

A2 = [7M - 4A6X2 - Wl/Pte* - wi2)],

h = (2/3)[7oo - 4A6].

Vi2, y22 are roots of v* + div2 + d0 = 0, where

di = [[/« - 4A6i?2][7o6 - 4A6i,6] - [7o4 - 4A6X4]2]/Z>2,

d0 = [[/« - 4A6r?2][7o4 - W] - UI» - 4An\]/D,,

D2 = k2[Io4 - 4A6ij4] - [702 - 4A6i;2]2,

A3 = [7„2 - 4A6i,2 - W]/[2(i;i2 - v22)],

A4 = [7o2 - 4A6»2 - W]/[2(i>22 - vi2)},

k2 = (1/3)[Zoo - 4A6].

Formula 7b, 13 points, degree 7:

(0, 0) Ao

(±mi, 0) Ai

(±m2,0) A2

(0, ±vi) A3

(0, ±o,) A4

(±X, ±11) A6

The parameters in this formula are determined by the same equations as the

parameters in Formula 7a except we use

*i = 0.65[7oo - 4A5],        k2 = 0.30[700 - 4A5],

Ao = 7oo - 2(Ai + A2 + A3 + A4) - 4A5.
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3. Concluding Remarks. We can obtain formulas similar to those given here

for any region (and weight function) which has the same symmetries as the ellipse.

We need only substitute the appropriate monomial integrals 72n,2m in the expressions

given.

It should also be noted that the formulas of degree 7 are not unique. Similar

formulas can be obtained by choosing different values for the quantities kx and k2.

Various 12-point formulas are obtained by choosing ki and k2 to satisfy

h + k2 = Zoo — 4A6.

Although there is this free parameter in the 12-point formulas we believe it is not

possible to obtain a formula of degree 7 using fewer points.
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Improved Asymptotic Expansion for the
Exponential Integral with Positive Argument

By Donald van Zelm Wadsworth

The usual asymptotic approximation to the exponential integral can be markedly

improved, for the case with positive real argument, by adding a simple correction

term as shown below. Similar results for the error function with imaginary argument

(essentially the same as Dawson's function) are given in [1].*

By definition, the exponential integral with positive real argument is

Ei(ic) = -j   fV' dt = -f fV dt - int.

The line integral along the real axis from —x to » is a Cauchy principal value since

there is a pole at the origin. The path of integration L goes from — x to », passing

above the origin. Repeated partial integration of the infinite integral yields Ei (a:) =

Enix) + e„ix), where

n-l

Enix) = ¿TVE m\x~m
0

is the asymptotic approximation for the interval (n — \)  ^ x < (n + AJ, and

enix) = -i-)"n\ j r-V dt - irr

Received November 2, 1964.
* The correction term derived in [1] could also be obtained, in a less direct fashion, from

the Chebyshev polynomial expansions for Dawson's function given in [2].


