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1. Introduction. The solution of a set of nonlinear simultaneous equations is

often the final step in the solution of practical problems arising in physics and engi-

neering. These equations can be expressed as the simultaneous zeroing of a set of

functions, where the number of functions to be zeroed is equal to the number of

independent variables. If the equations form a sufficiently good description of a

physical or engineering system, they will have a solution that corresponds to some

state of this system. Although it may be impossible to prove by mathematics alone

that a solution exists, this fact may be inferred from the physical analogy. Similarly,

although the solution may not be unique, it is hoped that familiarity with the physi-

cal analogue will enable a sufficiently good initial estimate to be found so that any

iterative process that may be used will in fact converge to the physically significant

solution.

The functions that require zeroing are real functions of real variables and it will

be assumed that they are continuous and differentiable with respect to these varia-

bles. In many practical examples they are extremely complicated and hence la-

borious to compute, and this fact has two important immediate consequences. The

first is that it is impracticable to compute any derivative that may be required by

the evaluation of the algebraic expression of this derivative. If derivatives are

needed they must be obtained by differencing. The second is that during any

iterative solution process the bulk of the computing time will be spent in evaluating

the functions. Thus, the most efficient process will tend to be that which requires

the smallest number of function evaluations.

This paper discusses certain modifications to Newton's method designed to re-

duce the number of function evaluations required. Results of various numerical

experiments are given and conditions under which the modified versions are superior

to the original are tentatively suggested.

2. Newton's Method. Consider the set of n nonlinear equations

(2.1) f,(xi,Xi, ••• ,x„) = 0,       j = 1, 2, ••• ,n.

These may be written more concisely as

(2.2) f(x) = 0

where x is the column vector of independent variables and f the column vector of

functions/y. If x,- is the ¿th approximation to the solution of (2.2) and ft is written

for f(x<), then Newton's method (see e.g. [4]) is defined by

(2.3) x,+j = x, — A,  I»

where A, is the Jacobian matrix [dfj/dxk] evaluated at x¿.

Now Newton's method, as expressed in equation (2.3), suffers from two serious
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disadvantages from the point of view of practical calculation. The first of these is

the difficulty of computing the Jacobian matrix. Even if the functions /> are suf-

ficiently simple for their partial derivatives to be obtained analytically, the amount

of labour required to evaluate all n2 of these may well be excessive. In the majority

of practical problems, however, the //s are far too complicated for this, and an

approximation to the Jacobian matrix must be obtained numerically. This is often

carred out directly, i.e., dfj/dxt is computed by evaluating/,- for two different values

of xk while holding the remaining n — 1 independent variables constant. Although

this direct approach gives an immediate approximation to the partial derivatives,

it is not without its disadvantages, the most serious of which is the amount of labour

involved. For in order to compute the Jasobian matrix in this way the vector func-

tion f must be evaluated for at least n + 1 sets of independent variables.

The second disadvantage of Newton's method is the fact that without some mod-

ifications it frequently fails to converge. Conditions for convergence are in fact well

known (see e.g. [4]), but they rely on the initial estimate of the solution being

sufficiently good, a requirement that is often impossible to realise in practice. Hence

Newton's method, as defined by (2.3), cannot be regarded as a good practical

algorithm.
Despite these disadvantages, however, the method has much to commend it.

The algorithm is simple, even though it does require the solution of n linear equa-

tions at every step, it has a sound theoretical basis and for many problems its

convergence is rapid. Furthermore, it has few competitors. The methods based upon

minimising some norm of the vector f by the steepest descent or some similar method

tend to converge slowly if the problem is at all ill-conditioned, although the very

new method described by Kizner [5] may ultimately prove to be more satisfactory.

In order to overcome some of the disadvantages of Newton's method it has

been suggested that the Jacobian matrix be evaluated either once and for all or

once every few iterations, instead of at every iteration as is strictly required. Both

these variants, however, require the complete evaluation of the Jacobian matrix.

In the class of methods described in this paper the partial derivatives df¡/dxk are

not estimated or evaluated directly, but corrections to the approximate inverse

of the Jacobian matrix are computed from values of the vector function f.

A correction of this type is carried out at each iteration and is much simpler to

perform than the evaluation of the complete Jacobian. It is hoped, therefore, that

this class of methods combines to some extent the simplicity of the constant matrix

(once for all) method with the ultimately rapid convergence of the basic Newton

method.

3. The Class of Methods. Let x, be the ith. approximation to the solution of (2.2)

and defined p, by

(3.1) P. = -Bi_1fi

where B, is some approximation to the Jacobian matrix evaluated at x<. Then a

simple modification to Newton's algorithm gives x,+i by

(3.2) x<+i = Xi + ¿¿p¡,

where ¿,, whose derivation will be discussed in section 5, is a scalar multiplier chosen



SOLVING  NONLINEAR SIMULTANEOUS  EQUATIONS 579

to prevent the process diverging. Let x now be defined as

(3.3) x = xt- + ¿Pi,

where t may take any arbitrary value. The functions /, may now be regarded as

functions of the single variable t and, since the partial derivatives 3/,/dx* are as-

sumed to exist, possess a first derivative with respect to t. It will now be shown that

an approximation to the derivatives dfj/dt, j = 1, 2, • • • , n, may be used to improve

the approximate Jacobian matrix B,.

Since x is now assumed to be a function of t alone,

and if by di/dt is understood the vector [dfj/dt], equation (3.4) becomes

(3.5) f = AP<
where A is the Jacobian matrix. Hence if an accurate estimate of di/dt were avail-

able, it could be used, via equation (3.5), to establish a condition that any approxi-

mation to the Jacobian matrix must satisfy. Now it has already been assumed that

the functions f¡ are sufficiently complicated for analytic expressions of their first

partial derivatives not to be available; the only way of obtaining an estimate to

di/dt is by differencing. Since the aim is to obtain an approximation to the Jacobian

matrix at the point x,+], it is necessary to obtain an approximation to di/dt at

this point. Hence expand each /,, still regarded as a function of t alone, as a Taylor

series about U and assume that the second and higher-order terms are small, giving

(3.6) t(ti -i)St«-iJ.

Hence when fi+I and i(U — si), where s,- is a particular value of s whose choice

will be discussed in section 6, have been computed, equation (3.6) may be used

without the need for further evaluations of the function f to obtain an approxima-

tion of di/dt and hence to impose a condition upon any approximation to the

Jacobian matrix. No special evaluation of f is ever necessary to do this since if s

is put equal to U, i(U — s) becomes f,, a known quantity. Eliminating di/dt

between (3.5) and (3.6) then gives

(3.7) ii+i - i(U - Si) S s.Ap,.

Consider now equation (3.7). It relates four quantities that have already been

computed to a fifth, the Jacobian matrix A, to which only an approximation B,

is available and to which a better approximation Bi+i is sought. Now in the class

of methods discussed in this paper B,+i is chosen in such a way as to satisfy the

equation

(3.8) fi+i - t(U - Si) = S.B.+1P,.

On comparing equations (3.7) and (3.8) it is seen that if the error in (3.7) is

negligible, i.e., if the sum of the second and higher-order terms in the Taylor series

expansion of each f, is sufficiently small, then Bi+i will have at least one of the re-
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quired properties of the Jacobian matrix. If, on the other hand, the omitted sums

are large, the matrix Bi+i will not approximate to the Jacobian matrix. Hence it

would appear reasonable to choose s, to be as small as possible consistent with not

introducing excessive rounding error into the estimate of di/dt.

If Si is put equal to U, equation (3.8) becomes

(3.9) ii+i - ii = ¿3vfiP,- ;

and this shows that the jth element of the vector B.+ip, assumes, from the first

Mean Value Theorem, the value of dfj/dt evaluated at some point, which varies

with j,. between x¿ and xl+i. Although this is not as good as obtaining a set of

derivatives evaluated at x<+i, it does ensure that Bj+i refers to points closer to the

solution than x,, since x,+i is, in some sense, a better approximation to the solution

than x,.

Now if the calculation is carried out holding the matrix B, in the store of the

computer, it will be necessary to solve n linear equations to compute, using equa-

tion (3.1), the step direction vector p< ; but if the inverse of this matrix is stored,

this operation is reduced to a matrix-vector multiplication. If H¿ and y¿ are defined

by

(3.10) Hi = -Bf1

and

(3.11) Vi = fi+i - i(U - s,),

equations (3.1) and (3.8) become

(3.12) p, = Hif,

and

(3.13) Hi+iyi - -Sip<.

Equation (3.13) does not, like equation (3.8), define a unique matrix but a class of

matrices. Hence equations (3.2) and (3.11)—(3.13) define a class of methods based

upon that of Newton for solving a set of nonlinear simultaneous equations, and

these methods will subsequently be referred to as quasi-Newton methods. By

making further assumptions about the properties of B,+i or Ht+i particular methods

may be derived.

The most important feature of the quasi-Newton methods is that although the

iteration matrix H, changes from step to step, no evaluations of f(x) are required

beyond those that would be necessary if Hi remained constant. This is an important

consideration if the vector function f is laborious to compute. Another feature of

these methods is that as x, approaches the solution the assumptions made in deriving

(3.6) become more valid. Hence if B. tends to the Jacobian matrix, the rate of

convergence may be expected to improve as the solution is approached, becoming

ultimately quadratic.

4. Particular Methods.

Method 1. In the previous section a class of methods was derived in which the

new approximation Bi+i to the Jacobian matrix is required to satisfy an equation
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involving the two values of the vector function evaluated at x,+i and x,- + (U — Si)p, ,

respectively. This equation from (3.8) and (3.11) is

(4-1) y. = SiBi+iPi

and relates the change y, in the vector function to the change of x in the direction

Pi. No information, however, is available about the change in f when x is changed

in a direction other than p,, hence it is not possible to obtain a fresh estimate of

rates of change of f in these directions. So, in Method 1, Bi+1 is chosen so that the

change in f predicted by Bi+i in a direction q, orthogonal to p, is the same as would

be predicted by B,. Symbolically, that is

(4.2) Bi+1q, = B.q,,       q/p, = 0.

This, with (4.1), is sufficient to define B,+] uniquely and it is readily verified

that this unique value is given by

(4.3) Bi+i = Bi + (y<-*B<fr)p/ _
Si Pirp,

However, as it was pointed out in the previous section, it is preferable to store

in the computer H, as opposed to B,, and it is possible, using Householder's modi-

fication formula, to compute Hi+1 with very little labour from H¿. Householder's

formula states that if A is a nonsingular matrix and x and y are vectors, all of order

n, and if (A + xyT) is nonsingular, then

(4.4) • (A + If)-.A--£^1.

Applying this to (4.3) and recalling (3.10) gives

,.-, TT ,     _  TT (SiPi + HiVi)pirHj

(4.5) Hî+i - H,---^-.

This equation defines the first of the methods to be discussed. Clearly Hi+i satisfies

(3.13).
It will now be shown for this method that if the Jacobian matrix A is independent

of x, i.e., if the equations to be solved are linear, then Bi+i is not a worse approxima-

tion to A than B, in the sense that the spectral norm of (A — B!+i) is not greater

than that of (A — B¡). For if the linear equations are

(4.6) Ax = b,

it follows from (3.3) and (3.11) that

(4.7) y i = s.Api,

and substituting this in (4.3) gives

(4.8) Bi+i = Bi- (Bi-A)Pi|^.
Pi P.

If Cj is defined by

(4.9) C, = B, - A,
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it follows from (4.8) that

(4.10) ci+1-C,(l-||0.

But the matrix

\     P.W
is symmetric and has n — 1 eigenvalues equal to unity and one equal to zero. Its

spectral norm is thus unity and since the norm of the product of two matrices is

less than or equal to the product of their norms (see e.g. [9]), then the norm of

C,+i cannot exceed that of C, and the assertion is proved.

Method 2. The second quasi-Newton method is obtained by requiring that

(4.11) H<+iV< = HiVi,       v/y< = 0

and is thus in some sense a complement of Method 1. Since H,+i must also satisfy

(3.13), it is readily seen that for this method H¿n is uniquely given by

(4.12) Hi+i = H,- - Í** + H<y')y/
y.ry.

By similar arguments used for Method 1 it can be shown that if the equations

to be solved are linear, then Hi+i is not a worse approximation to -A-1 than H,.

Since, however, this method appears in practice to be unsatisfactory, it will be dis-

cussed no further at this stage.

Method 3. The two methods described above are, in principle, suitable for

solving a general set of nonlinear simultaneous equations. If now certain assumptions

are made about the form of the equations, further methods may be derived. If,

in particular, the functions f¡ are the first partial derivatives of a convex function,

then solving the equations is a way of minimising the function. Under these condi-

tions it is known that at the solution the Jacobian matrix is both symmetric and

positive definite, and H,+i may be chosen to fulfil these requirements. In Method

3, which is, to the author's knowledge, the only one of this class of methods to have

been previously published, Ht+i is defined by

Hiy.y/Hi      SiPip,r
(4.13) Hi+1 = H,- - 7irHiji        Piry.

Clearly, if Hi is symmetric, then so is Hi+i and equally (3.13) is satisfied. If s,

assumes the value ¿,, the method becomes that of Davidon as described by Fletcher

and Powell. Since, however, it has been fully discussed elsewhere [1, 2], it will be

considered no further here beyond the comment that Powell [6] regards it not as a

version of Newton's method but as a conjugate gradient method, and the discussion

in [2] is along those lines.

5. The Prevention of Divergence. It was mentioned in section 2 that one of the

practical problems of using Newton's method was its frequent failure to converge

from a poor initial estimate of the solution. Although it is not possible to guarantee

convergence, divergence may be prevented by ensuring that some norm of the vector
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function f i is a nonincreasing function of i. The simplest, and that used in the author's

program, is the Euclidean norm although of course others may be employed.

In the practical application of one of the methods described in section 4, once a

step direction p, has been obtained from equation (3.12), x is constrained to satisfy

equation (3.3) so that, until x,+i has been determined, f(x) and its norm become

functions of t alone. The value U of t that is finally used to determine x,+i may then

be chosen in various ways, and two of these are now considered.

In the first method U is chosen to minimise the norm of f i+i. This is, perhaps, the

most obvious choice to make since it gives the greatest immediate reduction of the

norm and hence, in some sense, the greatest improvement to the approximate solu-

tion. However, in order to do this the vector function f needs to be evaluated a

number of times, and this means an increase in the amount of compu-

tation required compared with the alternative strategy of choosing a value of /,

which merely reduces the norm. Frequently the original Newtonian value of unity

is sufficient to do this, but even if it is not, it will be less laborious to reduce the

norm than to minimise it. Reducing the norm does not, of course, give as good

an immediate improvement to the solution as norm minimisation, but it does

mean that less work is involved in correcting the matrix H,.

The relative merits of these opposing strategies, that of obtaining the greatest

improvement to the solution during one step or that of using the new information

as soon as possible to correct H, and compute a new xi+i, are difficult to assess

from theory alone and recourse must be made to numerical experiment. The results

of applying these two strategies to various problems are discussed in sections

9 and 10.

6. The Choice of Si. Since B,- is required to approximate as closely as possible

to the Jacobian matrix, it is reasonable to choose s,- so that di/dt is approximated

as closely as possible, and this implies that s< should be as small as possible consistent

with the difference between f(i, — s,) and i(U) being large enough for rounding

error to be unimportant. However, it is also desirable for there to be no further

evaluations of the vector function f, use being made only of those values of the func-

tion computed in the course of minimising or reducing the norm. If the strategy of

norm reduction is adopted and if the first value of t chosen results in the norm being

reduced, then U is taken to be this value, and the only possible value that s,- can

assume without extra function evaluation is U . If, however, more than one evalua-

tion is needed to reduce the norm or if the norm minimisation method is used, then

there is a certain amount of latitude about the choice of Si within the requirement

that no further evaluations are permitted. It may still be chosen to be tt but from

the point of view of minimising truncation error the smallest possible s should be

chosen. This, however, is not easy to implement in practice. For assume that the

norm N(t) has been evaluated successively at t = /'*', k = 1, 2, • • • , tn, where

(6.1) ¿(1) = 1,

(6.2) r(m) = U ,

and where U is either the value of t that minimises N or the first t(k) for which N(t(k))

< N(0). If stt) is defined by
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■(6.3) sa) = í(m) - í(i),       k = 1, 2, • • • , m - 1,

then Si is best chosen to be that s * having the smallest modulus. It is, however,

impossible to compute this until t m itself is known, and this results in the necessity

of storing the m vectors f(i * ), where m is indeterminate, in order to compute the

appropriate value of y,.

In order to avoid this it is assumed that the value of s(i> most likely to have the

smallest modulus is given by putting fc equal to m — 1 in equation (6.3), and so

defining s, by

(6.4) Si = t(m) - tlm~u.

The corresponding value of y, is then given by

(6.5) yf - fi+i - f(i(M-x))

so that only two values of t(t), namely f(¿(*_1)) and t(t(k)), need be stored at any

one time.

If Si is put equal to U , the term "full step" will be used subsequently to describe

the method, whereas if s,- is given by (6.4), the term "incremental" will be employed.

7. Some Details of the Test Program. In order to test the methods described

above a program was prepared that would solve a given problem with given initial

conditions using a variety of methods. The program was written in ALGOL and

run on the English Electric KDF9 computer using the Whetstone ALGOL Trans-

lator [8]. In this implementation real numbers are stored as floating-point numbers

having effectively a 39 bit mantissa and a 7 bit exponent with an extra two bits to

indicate sign.

The initial estimate Ho to the inverse Jacobian matrix was obtained in every

case and for every method by evaluating the approximation to the matrix elements

dfj/dxk using the equation

(71) d/j ^fj(xk + hk) - fj(xk)

dXk hk

and inverting the resulting matrix by solving a matrix equation whose right hand

sides were the n columns of the unit matrix using Gaussian elimination with row

interchanges to select the pivot having largest modulus. The choice of hk was ar-

bitrary and was taken to be roughly one-thousandth part of Xk ■

A first value t1 of t was chosen to be unity since this is the value arising naturally

in Newton's method. The second value, if required, was given by the equation

(7.2) ,<». <' + y-i

where

(7.3) 0 = *(l)/*(0)

and where <t>(t) is the square of the Euclidean norm of i(t). Equation (7.2) is

derived as follows. It is clear that if each f¡ were a linear function of t and if the

matrix H, used to compute p, was the true inverse negative Jacobian, then <£(t)

would be a quadratic function of t having the value zero at t = 1. Since this func-
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tion cannot be negative, it must therefore have zero slope at t = 1. Denoting this

ideal quadratic approximation by <t>t(t), it follows that for <¡>q(t) to satisfy the

conditions at t = 1 it must be given by

(7.4) 0,(i) a (1 - 2t + i2)4>(0).

In practice, of course, the square of the Euclidean norm at t = 1 is very rarely

equal to zero and the assumption is now made that this is due solely to the presence

of an additional cubic term. Hence the function <p is assumed to be approximated by

the cubic function 4>c where

(7.5) <t>c = <t>« + at3.

By putting t = 1 in (7.5) it follows that a = <p(l) and hence

(7.6) *» ■ (1 - 2i + t2)<j>(0) + ify(l).

Now t2 is chosen to be the value of t that minimises <j>c and differentiating (7.6),

equating to zero and selecting the root lying between zero and unity gives equation

(7.2).
If further improvement to <t> is required, it is approximated by a quadratic func-

tion whose ordinates are specified at t = 0, 1 and i<2). If this function is convex, then

i<3) is chosen to be the value of t that minimises it, and a new quadratic is formed

whose ordinates are specified at i<3) and two of the previous triad of values of t.

Since the precise method of reducing or minimising the norm is peripheral to the

theory, it will be described no further here, the actual ALGOL procedure used being

given in Appendix 2.

The program, in addition to being able to test Methods 1 and 2 for any combina-

tion of minimising/reducing norm with incremental/full step choice of s was also

able to test both the "constant matrix" and "basic" methods, either minimising or

reducing the norm at each step. In the constant matrix method H0 is set up and

inverted as described above, and this matrix is then used unchanged to obtain pi

throughout the remainder of the calculation. In the basic method the matrix Hi

is computed afresh at each step using the same algorithm that was employed to

compute Ho. In the test program the increments hk were chosen initially to be

about one-thousandth part of the variables xk and were then held constant for the

rest of the calculation.

8. Basis for Comparison. The criteria by which the merit of any algorithm may

be assessed are the accuracy of the solution obtained, the time taken to reach this

solution and the amount of computer storage space used in the computation. Fre-

quently the second of these criteria is in conflict with the first and the third and

some arbitrary assumptions must be made before it is possible to give an overall

comparison of two different algorithms.

In the comparisons made in this paper storage space requirements are omitted

completely, time and accuracy alone being considered. Since it is impossible to com-

pare times accurately when two methods are tested on two different machines or

using two different programming systems, the further assumptions are made that

the total amount of computation, and hence the time taken, is directly proportional

to the number of evaluations of the vector function f that are necessary to obtain
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the solution and that the constant of proportionality is the same for all methods.

This is approximately true when the functions are simple and becomes more nearly

true as the complexity of the functions increases and the constant of proportionality

approaches unity. This measure of computing time is clearly more satisfactory than

the number of iterations since the amount of labour involved in an iteration may

vary from the evaluation of n + 1 functions and the inversion of a matrix in the

basic method to the evaluation of perhaps only one function and a few matrix-

vector multiplications in Method 1 with norm reduction.

In order to compare the performance of the various methods under as nearly

identical conditions as possible they were used to solve a set of test problems,

starting each problem from the same initial conditions. Since, however, the course

of computation varied with each method, it was impossible to terminate the calcu-

lations at the same point; the accuracy of the final solution as measured by the

Euclidean norm of the vector f varied from method to method, although in each

case the iteration was terminated as soon as this norm became less than a tolerance

arbitrarily chosen to be 10-6. Now one of the characteristics of Newton's method is

that the rate of convergence increases as the solution is approached and it is quite

possible for the final iteration to reduce the norm of f by as much as a factor of 10~2.

Hence although the iteration is terminated immediately the norm becomes less than

10-6, the final norm may be as low as 10-8, and it was thought necessary to include

this variation when assessing the merit of a particular method.

The measure of efficiency of a method for solving a particular problem was thus

chosen to be the mean convergence rate R, where R is given by

(8.1) ß = iln^
m     Nm

and where m is the total number of function evaluations and Ni, Nm the initial and

final Euclidean norms of f.

Although this definition of R is similar to Varga's definition of mean convergence

rate [10], it must be emphasised that the R defined by (8.1 ) has none of the properties

of that defined by Varga and in particular does not tend to an asymptotic value as

m—* ». It is merely intended to be a concise index of the performance of a method

applied to a particular problem in a particular situation and has no relevance outside

the context of the problem and situation to which it refers.

9. Case Histories and Discussion. This section is devoted to a discussion of the

behaviour of the various methods when applied to a number of test cases. The per-

formance of the methods are summarised for each test problem in a table which

gives the initial and final Euclidean norms Ni and Nm of f, the total number m of

function evaluations required to reduce the norm to Nm and the mean rate of con-

vergence R as defined in the previous section. The number of function evaluations

m includes in every case those- evaluations required initially to set up the approxi-

mation to the Jacobian matrix, and an asterisk against this figure indicates that the

iteration had not converged after that number of evaluations, and the run had been

terminated since the number of evaluations already exceeded the number needed

for convergence using a superior method. The tables are numbered to correspond

with the case numbers.
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While the program was being developed, it became increasingly apparent that

Method 2 was quite useless. In every case tried it rapidly reached a state where suc-

cessive step vectors p, and p,+i were identical and further progress thus became im-

possible, and for this reason it is omitted from the following case histories.

Cases 1-3. The equations from these three cases arose from design studies on a

pneumatically-damped hydraulic system and involve both logarithms and fractional

powers. The three cases analysed were taken from a large number of cases, all of

which were difficult to solve. The first case has three independent variables and the

second and third four. The third case is merely the second case with an improved,

initial estimate.

Case 4. The equations here represent a counterflow gas/water steam-raising unit.

They involve logarithms and various polynomial approximations of physical

quantities, e.g. the saturation temperature of water as a function of pressure. There

are only two independent variables and despite the magnitude of A7! the equations

were much easier to solve than those used to provide Cases 1-3.

Cases 5-8. These cases solved the specially-constructed equations:

/i = - (3 + «xi)xi + 2x2 - ß,

fi = Xí_i — (3 + aXi)xi + 2x<+i — ß,       i = 2, 3, • • • , n — 1,

fn = x„_i - (3 + ax„)x„ - ß.

Values of a, ß and n are given in the tables, and the initial estimates in all cases were

x, = —1.0,       i = 1, 2, •• • , n.

Case 9. These equations were taken from a paper by Powell [7] :

/i = 10(x2 - xi2),

ft = 1 — Xi,

and the initial values of the independent variables were

x, = -1.2,

x2 = 1.0.

Case 10. The equations for this case were due to Freudenstein and Roth [3] :

/t = -13 + Xi+((-X2 + 5)x2-2)x2,

f2 = -29 + xi + ((x2 + l)x2 - 14)x2.

The initial values were

Xi = 15,

x2 = -2.

An examination of Tables 1-4 shows that of the eight methods tested, three were

consistently good for all the first four test cases. These were the full step norm-re-

ducing variant of Method 1 and both versions of the basic method. All the other

methods were either uniformly bad, or tended to be erratic in their behaviour. In
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particular the norm-minimisation variants tended to be bad, or at least worse

than the corresponding norm-reducing variants, and the incremental methods were

either quite good or very bad. The reason for this latter behaviour is probably that

the method chosen to select s is, in retrospect, not particularly good, for in several

iterations the modulus of t was considerably less than the modulus of s. In view of this

the incremental methods were not tested further, although it is possible that with

a better method of choosing s they might become competitive.

The reason, on the other hand, for the poor performance of the norm-minimisation

methods is that they appear to be inherently inferior to the norm-reduction ones.

For to minimise the norm, regarded as a function of one variable, to the specified

tolerance from four to six function evaluations in general were required whereas the

comparable figure for norm reduction was from one to three. Hence unless the

number of iterations was very considerably less for the minimisation methods they

would require more evaluations than the reduction methods. In practice this was

found not to occur, and in particular for the full step variant of Method 1 the number

of iterations required when reducing the norm was in all four cases less than the

number required when norm minimisation was used.

The constant matrix method did reasonably well if a good initial estimate was

available, and the Jacobian matrix at that point was a good approximation to that

at the solution. In no case, however, was it superior to the full step norm-reducing

variant of Method 1, and if the initial estimate was poor, as in Case 1, it did very

badly indeed.

Table 1

Ni = 94.33

Method N„ »! R

Method 1, minimising, full step
Method 1, minimising, incremental
Method 1, reducing, full step
Method 1, reducing, incremental
Constant matrix, minimising
Constant matrix, reducing
Basic, minimising
Basic, reducing

4.456io
8.843io

289,0

198,o
035,0
619
557io
990,o

3
5
7
1
1

8
7

218*
233*
75

193*
386*
116*
53
33

0.046
0.060
0.272
0.031
0.013
0.026
0.416
0.593

Table 2

Ni = 3.050

Method N„ VI R

Method 1, minimising, full step
Method 1, minimising, incremental
Method 1, reducing, full step
Method 1, reducing, incremental
Constant matrix, minimising
Constant matrix, reducing
Basic, minimising
Basic, reducing

7.907,0
4.278,o
2.590,0
1.792,o
2.572,0
1.508,o
8.476,o - 8
1.394,0 -8

7
- 6

8
- 8

1
3

139
183*
44
41

416*
45*
69
38

0.109
0.074
0.422
0.462
0.006
0.169
0.252
0.505
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Table 3

Ni = 1.059io - 1

Method N„ m R

Method 1, minimising, full step
Method 1, minimising, incremental
Method 1, reducing, full step
Method 1, reducing, incremental
Constant matrix, minimising
Constant matrix, reducing
Basic, minimising
Basic, reducing

6.891,0
9.374,o
1.593io
1.593,o
5.160,0
4.266,o
6.630io
4.649,0

8
7
7
7
7
7
8
8

30
25
10
10
30
11
24
16

0.475
0.465
1.341
1.341
0.408
1.129
0.595
0.915

Table 4

Ni = 1.418,0 + 2

Method

Method 1, minimising, full step
Method 1, minimising, incremental
Method 1, reducing, full step
Method 1, reducing, incremental
Constant matrix, minimising
Constant matrix, reducing
Basic, minimising
Basic, reducing

Nn

1.008,0 - 4
1.601,0 - 5
1.689io - 7
1.164
1.044,0 + 2

1.047,o - 6
1.245,0 - 7
2.608,0 - 8

m

106*
133*
20
62*

205*
40*
52
35

R

0.134
0.120
1.027
0.077
0.001
0.468
0.401
0.640

On comparing the two variants of the basic method, it is seen that the norm-

reducing one was in all four cases superior to the norm-minimising one. Thus of the

three methods that did consistently well in the first four cases one was always

inferior to another, and for this reason was not tested further. This left only two

methods which were worth more extensive testing, and these were tried with six

more test cases.

On comparing the performances of the full step norm-reducing variant of Method

1 and the reducing variant of the basic method (subsequently referred to as method

1/fsr and basic/r), it appeared that method 1/fsr was superior to the basic/r method

if the problem were only mildly nonlinear, and it was conjectured that this superi-

ority would become more evident as the number of independent variables was in-

creased. Cases 5-8 were chosen to test this conjecture and do in fact tend to sup-

port it.

Case 9 was taken from a paper by Powell where he describes a method for minimis-

ing the sum of squares of nonlinear functions. If this sum happens to be zero, then

this procedure does in fact solve a set of nonlinear equations. The poor value of R

(computed from data quoted in [7]) achieved by Powell's method is due not so

much to the fact that this method required more function evaluations than either

method 1/fsr or the basic/r method but to the phenomenal improvement of the

norm that occurred during the final iteration of the latter two methods. In each case

the norm was reduced from greater than 10"   to its final value during the last



590 C.   G.   BROYDEN

iteration. Because of this the number of function evaluations may be a better

criterion of merit than the mean convergence rate, and using this criterion the

basic/r method is again easily the best with method 1/fsr a poor second. It would

thus appear that for certain problems the advantage shared by method 1/fsr and

Powell's method of not requiring the computation of derivatives is more apparent

than real.

Nx = 1.910

Table 5

a = -0.1       ß - 1.0 n = 5

Method Nm m R

Method 1, reducing, full step
Basic, reducing

1.991,o - 7
4.577,o - 8

11
19

1.462
0.924

Nx = 1.803       a

Table 6
= -0.5       ß = 1.0 n = 5

Method N„ m R

Method 1, reducing, full step
Basic, reducing

9.007,o - 8
8.918,o - 8

11
19

1.528
0.885

Nx = 2.121

Table 7

a = -0.5       ß = 1.0 n - 10

Method

Method 1, reducing, full step
Basic, reducing

N„

1.597,o - 7
2.602io - 7

m

18
34

ß

0.911
0.468

JVi = 2.646
Table 8

a = -0.5       ß = 1.0 n = 20

Method

Method 1, reducing, full step
Basic, reducing

N„

3.611io - 7
4.185» - 6

m

29
64*

R

0.545
0.209

Table 9

Nx = 4.919

Method

Method 1, reducing, full step
Basic, reducing
Powell

N„

4.729,o - 10
2.547,o - 10
1.000,0 - 4

m

59
39
70

R

0.391
0.607
0.154
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Case 10, for which no table is given, is due to Freudenstein and Roth. Both

method 1/fsr and the basic/r methods failed to reach a solution although both came

to grief at a point that proved to be a local minimum of the norm of f. Now the norm

of f can be a minimum greater than zero only if the Jacobian matrix is singular at

that point, and this contravenes one of the cardinal requirements for the success of

Newton's method. For cases like this neither Newton's method nor any of its de-

rivatives is likely to succeed and some radical innovation, like that due to Freuden-

stein and Roth, is necessary.

10. Conclusions. From the discussion in the previous section the following con-

clusions emerge.

( 1 ) Norm reduction is a better strategy than norm minimisation.

(2) If a reasonably good initial estimate of the solution is available method

1/fsr is superior to the basic/r method.

(3) If a reasonably good initial estimate is not available then the basic/r method

is superior to method 1/fsr.

Conclusions (2) and (3) are somewhat tentative, and the term "reasonably

good" is itself rather vague. Furthermore the behaviour of the various methods

depends upon the nature of the problem they are attempting to solve, and it is thus

unlikely that the few test problems selected give a sufficiently accurate picture of

the overall behaviour of the algorithms to enable any more precise statements on the

relative merits of the methods to be made. However, since method 1/fsr has never

failed to converge when the basic/r method has converged and since for many of the

test cases it was superior to the basic/r method, it may prove to be a useful alterna-

tive, especially if a good initial estimate of H, is available. This would occur in the

method of Freudenstein and Roth or in solving a set of ordinary differential equa-

tions by a predictor-corrector technique, when the corrector equations could be

solved by Method 1 using as an initial estimate for Hi the final H, obtained during

the previous step.
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Appendix 1. Summary of Method 1/fsr

1. Obtain an initial estimate Xo of the solution.

2. Obtain an initial value H0 of the iteration matrix. This may be done either by

computing and inverting the Jacobian matrix, or it is possible that a sufficiently

good approximation may be available from some other source, e.g. the final value

of Hi from some previous calculation.

3. Compute f, = f(x,).

4. Compute p, = H.f,-.
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5. Select a value U of t such that the norm of i(x( + ¿,pi) is less than the norm

of f(Xi). This is done iteratively and a modified version of the ALGOL procedure

given in Appendix 2 may be used. In the course of this calculation the following

will have been computed:

Xi+i = Xi -f- ¿,pi ,

fi+l = f(x^i).

6. Test fi+i for convergence. If the iteration has not yet converged, then:

7. Compute y, = ii+x — f,.

8. Compute Hm = H< - (Hiy,- + ¿iPi)piTHi/pi7H<yi.

9. Repeat from step 4. ,

Appendix 2. The minimisation of the Euclidean norm of f regarded as a function

of the single variable t was carried out by a slightly modified version of the ALGOL

procedure quadmin. The modifications enabled the procedure to perform some ad-

ditional housekeeping operations and in no way affected the course of the iteration.

On calling the procedure, the nonlocal variables n, last norm, x and p were set up as

follows.

Nonlocal variable Value

n Number of independent variables

lastnorm ftrf»

X Xi + p.-

V P.
The procedure compute calculates the vector f (x, -f- ip,-) for the current value of

t, where x, + tpi is stored in the array x, and stores it in the nonlocal array /. The

real procedure evalcrit computes the square of the Euclidean norm of the vector

stored in the array /. On entry to quadmin t is set to zero to prevent premature

emergence, but emergence is enforced when the number of iterations exceeds 10.

procedure quadmin;

begin comment   This procedure minimises the Euclidean norm of the re-

siduals, treated as a function of the single variable t.

Quadratic interpolation is used;

procedure set (i);   value i;   integer i;

begin        integer j;

ii := i;    vt[i] :— t;

ioTJ := 1 step 1 until n do x[j] :.= x[j] + (t — last 0 X p\j];
goto recompute;

end set;

real xx, xw, xy, last t, norm;

integer i, ii, upper, mid, lower, iterone;

array phi, t><[l:3];

last t :— 1.0;    t := 0;    iterone := 0;

recompute: iterone := iterone + 1;

compute ;   comment / now contains an approximation to /,-+i ;

norm : = evalcrit;

if (abs(¿ — last i) > 0.01 X abs(i) and iterone g 10) or iterone = 2

then begin if iterone = 1 then

begin       vt[l]   :=  0;    vt[3]  :=   1.0;    phi[l]   :=  lastnorm;

phi[3] := norm;
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xx := norm/lastnorm;    t := (sqrt(1.0 + 6.0 X

xx) - 1.0)/(3.0 X xx);

lower := 1;    mid := 2;   upper := 3;    set (2);

end else

begin       phi[n] := norm;

xw := vt[2] — vt[3];   xx := vt[3] — vt[l];   xy : =

vt[l] - vt[2];

xw := ~(phi[l] X xw + phi[2] X xx + phi[3] X

xy)/(xw X xx X xy);

xx  :=   (phi[l]  - phi[2])/xy  - xw  X   (vt[l]  +

vt[2]);

last t := t;

t :=  (if xw > 0 then —xx/(2.0 X xw) else if

phi [upper] > phi [lower]

then 3.0 X ^[lower] - 2.0 X t^mid] else 3.0 X

shipper] - 2.0 X i^mid]);
if t > Cupper] then

begin      i := lower;   lower :=   mid;    mid   : =

upper;   upper := i;   set(upper);

end else if t < ^[lower] then

begin      i :— upper;   upper := mid;    mid : =

lower;    lower := i;   set (lower);

end else if t > vt[mià] then

begin      i := lower;   lower := mid;    mid := i;

set (mid) ;

end else

begin      i := upper;   upper := mid;    mid := i;

set(mid) ;

end;
end;

end modify step;

lastnorm := norm;

end quadmin;
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