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A Class of Expansions of G-functions and the
Laplace Transform

By Arun Verma

1. Introduction. Several general expansions involving G-functions were given in
a series of papers by Meijer [4]. Recently, Wimp and Luke [6] obtained some expan-
sions involving G-functions which were more general than the results of Meijer.
These results were obtained by generalising certain known results of Field and
Wimp [3]. The object of this paper is to use the Laplace transform and its inverse to
derive certain types of expansions involving G-functions. The advantage of this
method, in the present context, is to show how the expansions involving G-functions
follow as obvious and natural consequences of similar expansions for the generalised
hypergeometric functions.*

In §3 an expansion involving G-function has been proved by using a generalisation
of a result due to Niblett [5] deduced in §2. The expansion is incidentally a generali-
sation of some of the expansions given by Wimp and Luke, and contains as special
cases many of the expansion theorems of Meijer [4].

2. In the first instance we shall prove the following generalisation of a result
due to Niblett [5].
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= g and |z | < 1, and the series of the hypergeometrlc functions on the right
hand is absolutely convergent. To prove (2.1) we use a simple extension of the

method used earlier by Chaundy {1] for proving a similar result.
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* For the notation and the properties of G-functions see Erdélyi [2].

1 I am grateful to Mr. Y. L. Luke and the referee for suggesting certain improvements
in the original version of this paper.



EXPANSION OF G-FUNCTIONS AND THE LAPLACE TRANSFORM 665

The term independent of z on the right hand side is seen to be unity. It thus
remains to show that the coefficient of any positive power of x vanishes on the
right, i.e., when M > 0,
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This, however, is the coefficient of " in
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in which the lowest term is 2. This completes the formal proof of (2.1). The re-
arrangement of the infinite series is justified due to absolute convergence.

This result reduces to one proved by Niblett [5] for w = 1 and u = ¢. And for
o = 0, this gives us a result due to Meijer [4] on assuming v = ¢q, (ex) = (c,)
and after suitable adjustments of the parameters.

= 0.
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3. Next, we generalise (2.1) for the G-functions in the following form:
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and the series on the right hand side has a meaning.

We prove (3.1) by mathematical induction. We suppose that (3.1) is true for
some fixed values of I, m, p, q, s, ¢, u, v and W. To effect the induction with
respect to » multiply both sides by z7**, replace 2 by 2z and take the Laplace

transform with respect to z on both the sides. Then using the known result
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on both the sides, we get a relation in which » has been replaced by v + 1.
Further, to effect the induction with respect to m multiply both sides by 2°™+! ;
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replace z by x/z and take the inverse Laplace transform with respect to z on both
the sides. Then using the known result
(a,) )
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provided Rla > 0, and the conditions (3.2-1) and (3.2-ii) hold; on both the sides,
we get a relation in which m has been replaced by m + 1.

Similarly, the induction with respect to I, N, p, q, s, ¢, w and W can be effected.
Since, forl = m =t = v = W = 0, (3.1) reduces to the relation (2.1), the result
is established completely.*

Next, using first the relation [2; 5.3.1(9)]
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which is apparent from the definition of the G-function, on both the sides of (3.1)
one can get an expansion of G(Ar) in a series of the products of G(x) and F (7).

It is worth noting that by taking & = 0, g = 1, a, = h, ¢, = h, we get a result
which is essentially the sixth theorem of Wimp and Luke [6], which in its turn con-
tains as a particular case Theorem 6 of Meijer [4].

One can easily extend a result due to Carlitz and Alsalam [7] to G-functions by
using the above technique.

Added in proof. In (3.1) taking a; = t and then letting t — 0, we get the sum of
an infinite series of G-functions in terms of products of gamma functions, a result
which also generalises the known formula due to MacRobert and Ragab [Math. Z.,
v. 78, 1962] and is perhaps a solitary example of its type for the G-functions.
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* The conditions on the parameters arise due to the particular method followed and can
be waived off by analytic continuation.



