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A Class of Expansions of G-functions and the
Laplace Transform

By Arun Verma

1. Introduction. Several general expansions involving G-Îunctions were given in

a series of papers by Meijer [4]. Recently, Wimp and Luke [6] obtained some expan-

sions involving G-functions which were more general than the results of Meijer.

These results were obtained by generalising certain known results of Field and

Wimp [3]. The object of this paper is to use the Laplace transform and its inverse to

derive certain types of expansions involving G-functions. The advantage of this

method, in the present context, is to show how the expansions involving G-functions

follow as obvious and natural consequences of similar expansions for the generalised

hypergeometric functions.*

In §3 an expansion involving G-function has been proved by using a generalisation

of a result due to Niblett [5] deduced in §2. The expansion is incidentally a generali-

sation of some of the expansions given by Wimp and Luke, t and contains as special

cases many of the expansion theorems of Meijer [4].

2. In the first instance we shall prove the following generalisation of a result

due to Niblett [5].
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provided p + s^q, or p + s — 1 + q, and \ xw \ < 1, s + u + 1 g q, or s 4-

u = q and | x | < 1, and the series of the hypergeometric functions on the right

hand is absolutely convergent. To prove (2.1) we use a simple extension of the

method used earlier by Chaundy [1] for proving a similar result.

Comparing the coefficient of [iap)]Nw /N\ on both the sides of (2.1), we get
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Writing n = N + r, we find that this reduces to

.       .,   ,   vn        ,, y [h + Nil - a) + 1 - a]r-i[jb.) + NUJeu) + NU-xY
1  =  \h + JV(1 - a)) 2_, -r.   .        j.n-

r=o rl[icq) + N]r

„ \ib.) + N + r, ien) + N + r,h + il - a)iN +
X s+u+ltq L icq) + N + r

r);xl

Received December 31, 1964.

* For the notation and the properties of G-functions see Erdélyi [2].

f I am grateful to Mr. Y. L. Luke and the referee for suggesting certain improvements

in the original version of this paper.
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The term independent of x on the right hand side is seen to be unity. It thus

remains to show that the coefficient of any positive power of x vanishes on the

right, i.e., when M > 0,
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This, however, is the coefficient of x"~l in
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in which the lowest tenu is .rM. This completes the formal proof of (2.1). The re-

arrangement of the infinite series is justified due to absolute convergence.

This result reduces to one proved by Niblett [5] for w = 1 and u = q. And for

a = 0, this gives us a result due to Meijer [4] on assuming u = q, (eu) = (cs)

and after suitable adjustments of the parameters.

3. Next, we generalise (2.1) for the G-functions in the following form:
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provided

v ^ I, t ^ m, I + m + q + W < 1 + h + s + 21 + 2v, | arg xw | <

ir(l + Ä + 8 + 2i + 2»-i-i»-g-Tr), <-r-^<2 + 2Z +

2m + 2g + s + u, | arg a; | < §tt(2 + 21 + 2m + 2q + s + u - t - v),

and the series on the right hand side has a meaning.

We prove (3.1) by mathematical induction. We suppose that (3.1) is true for

some fixed values of l, m, p, q, s, t, u, v and W. To effect the induction with

respect to v multiply both sides by z~f"+1, replace x by xz and take the Laplace

transform with respect to z on both the sides. Then using the known result

(2) f e-VW (xy | [#) dy = 0$8 (« j a\if) ,

provided

(i) p + q < 2im + n), | arg x \ < irim + n — Jp — \q),

(ii) Rla < Rlbh + l,h = 1,2, ■■■ ,m;

on both the sides, we get a relation in which v has been replaced by v + 1.

Further, to effect the induction with respect to m multiply both sides by z0m+l   ,
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replace x by x/z and take the inverse Laplace transform with respect to z on both

the sides. Then using the known result

<3)       ¿I«'<"« (f |IÖ)* - ̂ (*I<££.)•
provided Rla > 0, and the conditions (3.2-i) and (3.2-ii) hold; on both the sides,

we get a relation in which m has been replaced by m + 1.

Similarly, the induction with respect to l, N, p, q, s, t, u and W can be effected.

Since, for I = m = t = v = W = 0, (3.1) reduces to the relation (2.1), the result

is established completely.

Next, using first the relation [2; 5.3.1 (9)]
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which is apparent from the definition of the G-function, on both the sides of (3.1)

one can get an expansion of G(Xx) in a series of the products of G(x) and F(X).

It is worth noting that by taking a = 0, gm = 1, ap = h, cq = h, we get a result

which is essentially the sixth theorem of Wimp and Luke [6], which in its turn con-

tains as a particular case Theorem 6 of Meijer [4].

One can easily extend a result due to Carlitz and Alsalam [7] to G-functions by

using the above technique.

Added in proof. In (3.1) taking Oi = t and then letting t —» 0, we get the sum of

an infinite series of G-functions in terms of products of gamma functions, a result

which also generalises the known formula due to MacRobert and Ragab [Math. Z.,

v. 78, 1962] and is perhaps a solitary example of its type for the G-functions.
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* The conditions on the parameters arise due to the particular method followed and can

be waived off by analytic continuation.


