
Some Remarks on the Stefan Problem*

By Alan Solomon

1. Introduction. In this discussion we examine a method, motivated by M. Rose

[4], for the determination of the temperature distribution in a medium undergoing

a change of phase.

Consider a semi-infinite slab x ^ 0 of material which has a critical temperature

Tc > 0 at which a change of phase occurs. Let the slab be initially at a constant

temperature V > Tc. If at the initial time, t = 0, the temperature at x = 0 is

set at T = 0 and remains so for all time, then a phase changing process is initiated.

Hence at a later time there is a region, 0 Ú x ^ x , consisting of material in Phase

"I" separated from the material in the original Phase "II" by a front x*it) moving

to the right (see Figure 1). Let H be the latent heat of the material, which is lost

during the change from Phase II into Phase I. We will for simplicity suppose that

the density p of the material is the same for each phase. Let Ci, K\ and c2, K2 be the

specific heat and the conductivity of Phase I material and Phase II material

respectively, and set k¡ = Ki/idp), i = 1,2.

The problem of finding the temperature distribution in this situation was solved

explicitly by F. Neumann (see [1, Chapter XI]).

We wish to consider a related problem for a function which up to an additive

constant can be identified with the specific internal energy, and show that the above

problem is equivalent to this related one, by obtaining from it, Neumann's explicit

solution.

Let Tix, t) be the temperature of the slab at time t and position x, and define

T to be a function of the "internal energy" e by the relation

(1) Tie)

H

Cl

Tc +

+ Tc

e -2H

C2 :

e < H,

H á e ^ 2H,

e > 2H.

(See Figure 2.) For any small e, 8 > 0 define the function «(e) by:

ki , for e ^ H,

<Piie), H ge g H + e,

(2) *(e) = \ô, íí + eáeá2fl-e,

<foie), 2H - e g e g 2H,
k2 , 2H g e

where <¡>i, <j>2 are any smooth monotonie functions so defined that «(e) together with

its first derivative /(e), is continuous (see Figure 3). In Section 2 we find a solution

Received January 31, 1966.

* The work presented in this paper is supported by the AEC Computing and Applied

Mathematics Center, Courant Institute of Mathematical Sciences, New York LTniversity,

under Contract AT(30-1)-1480 with the U.S. Atomic Energy Commission.

347



348 ALAN   SOLOMON

T(e)f

x*(t)

Figure  I.

Slope = l/C2

eix, t) of the equation

(3a) et = ÍKÍe)ex)x ,    for t, x > 0,

such that

(3b) eix, 0) = e2,    e(0, t) = 4,

with

(3c) ei # - CiTc,        e2 = 2H + c2(7 - Te)

and show that for e —> 0, á —» 0, it yields Neumann's solution. This proof justifies

some confidence in the numerical method based on the specific interval energy

formulation proposed by Rose [4] for solving the Stefan problem. In Section 4, we

investigate a numerical example which reveals certain unanswered questions related

to the accuracy of the numerical scheme as a function of the parameters introduced

in Section 2 to study the specific internal energy formulation. The scheme pro-

posed by Rose [4] corresponds to a special choice of these parameters.

The author wishes to thank Professor E. Isaacson for introducing him to this

subject, and for many helpful discussions about it.

2. Solution of the Problem. Using Boltzmann's transformation z = z/(4i)1/2,

problem (3a, b) is transformed into the following boundary value problem for a

function Eiz) = eix,t).

Find Eiz) such that:

(4a)

(4b)

where by (3c),

(4c)

1 (K(E) —\ + 2z— = 0
dz\ dz J dz

EiO) = ei,       E(*>) = e2,

ei < H < 2H < e2.

This problem is dealt with in the following manner.

For any number A > 0 there exists a unique function Eiz) satisfying (4a)

and the initial conditions

(5) EiO) = ei,       KiE'iO) = A,
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K(e)f

Figure 3.       K=K(e)

or equivalently, the integral equation

(6) E{z) = ei + Al<EW)eXP{-(^
2tdt

s))exp\     i   KiEit))
ds

(see [2]), and defined for all values of z. Moreover, since k(J^(s)) ^ 5 > 0 for all

s, the integral on the right-hand side of (6) converges as z tends to infinity, to a

well defined limit; thus Eiz) converges as well to a definite limit, which we denote

by <b.
Conversely, for any <p > ei we can find a constant A > 0 and thus a correspond-

ing Eiz) for which

(7) <p = ei 4- A l ^)ex»{-l¿mjdt}ds

for if k* = max (ki , k2), with any A > 0,

exp

(x5)1/2/2«* ̂  í       -L4p7,v
■/o "(Ms))

21

iEit))
dl

ds è (™T72Ô,

and since ¿? depends continuously on A, as A ranges through all positive values,

the integral in (8) will as well.

Now for a given <j>, both A and Eiz) depend on the choice of e in (2). From (6),

E\z) > 0 for all z, so that, if <¡> > 2H there are points zH+t > zH , and z2H > z2B^t

for which

(9) Eizn) = H,       EizH+i) =H + e,        Eitu-.) = 2H - e,        Eiz2B) = 2H-

From (7), (8),

(10) 0 < 25(0 - ei)/iirK*)m ^ A  g 2k*í4> -  ei)/iirh)m,

and A is bounded independently of e. Since by (6), (9), and (2),

(11) H = (A/ki) exp ( -s2Ai) ds + ei = ei + Ux1'2/^)1'2) Erf (2jr/«i1/2)
Jo

with Erf the error function, while by (4c), (10),
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Erf (Zfl/Ki    ) è -Sri-ñ— > 0,
K*i<b — ei)

we find that zH is bounded from below by a positive constant independent of e.

On the other hand, from (6), (7), (10a)

0<<p-iH + e) = A f    _*«?{-['-Mr) da
JZií+t k(Í4(s)) (     Jo   KiLit))}

\ ±¿ )
. 2k Í4> — ei)  fx ,      2/   \ -,

=       xf   stallt eXP ( _S /k2) ds
S(ir5)1/2      J2ff+<

so that 2i/+e (and thus zH) is bounded from above by a constant independent of e.

Now by (6),

(i3) > a rH+-    j zH2    r 2tdt\,

^ ÍA/k*) exp Í—Zh/ki 4- 2h2/ô — z2n+t/ô)izH+c — zB),

so that as e —> 0, Zh+c — zH —> 0. Similarly, we can easily show that z2H-t, z2H are

bounded by positive constants independent of e, and z2H — z2B-t —> 0. Let now e —» 0

and ^ > 2Jï be fixed. Then for each « we can find a value A and a function Eiz)

obeying (6). Choose a sequence en —> 0 such that the corresponding sequences of

points zH , zH+t, and z2H-e, z2H converge to values denoted by zH , z2H, while the

A-values converge to a value A. The corresponding functions Eiz) are uniformly

bounded (by 4>), and equicontinuous in every z interval, since the derivatives:

j_[z2tdt\

F>(2) =       XP\    I  xjEjt))}      2/(0 - ei)
K   ' xiEiz)) 7T1'253'2

are uniformly bounded independently of e. Thus by the Arzela-Ascoli lemma, we

can extract a uniformly convergent subsequence converging to a continuous func-

tion Eiz), satisfying Eq. (6), where k(2?) is now a piecewise constant function:

{ki, E < H

(14) k(E) = U, H < E <2H
[k2 ,       2H < E

and Ei » ) =0.
We now claim that for a given 0 > 2H there is only one such function Eiz)

determined by a unique A, which is equal to <t> at z —  <x>.

To see this we need only to show that <p increases monotonically as A increases,

for any solution of (6). But as A increases, (11) implies that zH decreases, while by

(6), (14),
A  p* f     ,.   2tdt\.

h--tL expH mtY)}ds
(15)

A I        2
- exp I zH

1 _ 1
32«

exp ( —s /S) (is.
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Letting t = s — zH in this integral, we find that

(15a) H =-7-^7-s exp ( -t2/S - 2zHt/Ô) dt,
5 exp ízh2/ki) Jo

so that as A increases, the integral in (15a) must decrease; since zH decreases with

increasing .4, z2B — zB must decrease and so z2B must decrease as well. However, by

(6), (14),

(16)      4> - 2H = * exp L2 (I - ±) - z\B (\ - l\l •   f  exp ( -s2/k2) ds
«2 ( \0 «1/ \0 K2/J ->z2B

= - exp< — iz2B + zB)iz2B — Zh) (7-

(16a)

exp< — z\B [- — -]>•  \     exp ( —s/k2) ds;
{ \Kl K2/j ->z2B

supposing without loss of generality that m ^ k2 , we see that as A increases, <b will

also increase.

Thus for each <j> we can find a unique A and a solution Eiz) of (6), ( 14). Choose

that solution Eiz) for which <j> = Ei») = e2. Eiz) is continuous, and on the

intervals [0, zB], [zB, z2B], [z2B , 00] has a derivative

(i7)        '«■to^KwI'
having jump discontinuities at zB , z2B . For z ?¿ zB ,

(18a) Eiz) = ei + - f exp j--l ds,
Kl JO I       KlJ

(18b) E'(2) = -exp(-32Ai);
Kl

for zB is 2 ^ z2B ,

i 19a) tf (*) = ei + A exp ( -zb2/ki) f exp { "(.{ ".Z"2)/S] ds,

(19b) #'(z) = 4 exp (-s*2Ai) exp ((zff2 - z2)/5),

and for 22ff á z,

Eiz) =ei + A exp/-^) exp(-("2ff "
Kl   I I Ô

(20a)
f      1 i/-z\B)\,

■LmsT)expv       -\ds'

(20b)    Éiz) = é expj-^) exp i*2« ~ A exp (*" '
K'2 (        Kl J [ K2 J I

We claim now that as 5 —> 0, Eiz) tends to the internal energy function cor-

responding by (1), to Neumann's solution. To see this, we show that as 5 —* 0,
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z2B — zB —> 0 and z2H , zB tend to some common finite number z . We will again

assume, without loss of generality that m S i¡, and 8 « ki . By using (10) with

4> = e2 and k    = k2 and (16a), we find that

(21)

or

(21a)

whence

(21b)

thus

(21c)

e2

I                     \     3/2

2ff   ̂ -gÜ2-   eXP "G  -  K¡)   (ZL   -  ̂

exp{Q_l)(22ff_^},(ef^)^,

/ e2 — ei \

\e^2Hj K22 2   ^
z2B — zB  s

K2

5«2       ■

— 5 (»)1/2

2
22ff 2ff" —> 0    as    5 —> 0.

We next claim that there exists a bound Mi independent of 5, such that

(22) zB , z2B ^ Mi.

However, noting that for ki < k2 , and since z2B > zB , the first two exponentials in

(16a), with <t> = e2, are bounded by 1, we substitute the value of A obtained by

writing z  =  zB in  (18a), and find

(23) 0 < e2 - 2H
< jH - eiK JZ1

exp ( —s A2) ds

K2 r'B

\     exp (—s2Ai) ds
Jo

for all small 5 > 0. If for some null sequence of 8 values, we had z2B —> 00, then by

(21c) we must have zB bounded away from 0, in which case the right hand side

would tend to zero, which is impossible. Thus (22) is proved.

Using again (18a) with z = zB , we see that

(24) 4^2(3- ei)(Ki/7r)1/2 > 0

for all 5 > 0, so that the A values are bounded away from zero. Now by (16) with

<t> = e2

K2(e2 - 2H) exp \iz\B - zB2)/8]
(25) A =

r 2 r\    roo >

exp<—-—} I     exp (— s2/k2) ds
{ K2 Kl J    ->z2H

thus implying, by (15), that

exp (— zB/Ki)K2ie2 — 2H)
H =

/•OO

exp Íz\b/k2 — zH2Ai)  /     exp i—s2/n2)
•'ion

ds

exp iz2H/S)

(26) /      exp ( — s2/5) ds
J za

>
K2ie2 — 2H) exp izB2/ni)

exp

2
Z2B

KS

ZJL

ki

/»QO

/     exp (— s2/k2) ds

iz2B — zB)
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where we have used the inequality

exp (—s2/5) ds ^ iz2B — zB) exp i—z\B/8).
-B

Thus

2 2

ôii exp < —-— > /     exp ( —s/k2) ds

(27) z2ff - 2a ^-L^- «M •«-——      -  ^ 5M2
K2(e2 — 2«) exp ( — zb2/ki)

where M2 is independent of 8.

We claim now that A is bounded from above independently of 8; however, by

(25), since z2B is bounded from above, and since (27) implies that,

g2g 7 Z"  Ú iz2B 4- za)M2
0

this assertion is immediate. This implies by (18a) for z = zB that zB and therefore

z2b , are bounded away from 0, independently of 5.

Thus for all 8 < ki , there are constants Co, Ci, c2, such that

(28) 0 < c0 = zB , z2B , A  s; ci <   co,       z2B — zB ^ c25.

Now let 5 —» 0, and choose the corresponding sequence Eiz) of solutions of (6) with

kÍE) defined by (14), such that the points zB , z2B converge to one finite value z*,

while the A values converge to a number denoted again by A. This can clearly be

done by (28). Then Eiz) as defined by (18a) for any closed subinterval of [0, z*]

converges to a function, denoted again by Eiz), and defined by

(29) Eiz) = ei 4- UAi)  f  exp (-s2Ai) ds,
Jo

which can then be defined by continuity on [0, z*], with lim Eiz) — H as z tends

to z .

Moreover, by using the fundamental theorem of the calculus, the mean-value

theorem for integrals, (18a) and (19a), we find for any 8 > 0, that

— exp (-(s2 - zB)/8) ds

fZiB 2s
= 1—1      — exp izB/8) exp (— s2/8) ds

JzB       S

i   o*   ( */ ^ rHexp\l KWNdt),
= 1 — 2s   exp izB Ai)  /-—,r,,\\     —- ds

JzB kíEís))

= 1 - 2s* exp Ízh2/ki)H/A,

where zB ^ s* ^ z2B . Thus, by (20a), for z 2ï z2b ,

e,/ x            ,    ,         /       2,  x /.      2s*H exp izB2/m)\
Eiz) = ci 4- A exp ( — zB Ai) I 1-^-'— 1

(30) . /       /   2 2    x   ,    x
f  exp ( — (s   — z2b)/k2)   ,

Jo   " «Eis)) aS
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which converges to the function

et/ x,            .    i         /    / *x2/  x /,       22*?/ exp ((2*)2Ai)\£(2) = ei 4- A exp ( - (2 ) Ai) 1 1-^-±1—>_L±1. \

ds

(30a)
exp ( —(s   — (2 ) )A2>

/JoJo KiEis))

as 5 tends to 0, where in (30a), kÍE) = ki , for 2 ^ 2*, and k2 for 2 è 2*. The two

functions, of (29) and (30a), differ in magnitude by H at 2 = z*.

We now wish to obtain the values of A and 2*, and thus the values of the solu-

tion, and to identify the results with those of Neumann.

For this reason, let X = z*/ni12. Since for Eiz) as defined in (30a) we have

e2 - 2H = Ei») - Eiz*),

we have from (30a), with A obtained from (29) by setting z = zB ,

K2mje2 - 2H) = exp (xWk2) exp j-X2)jH - et)

(31)    (ttki)"2 Erfc (Xki1'2^-"2) x"2ErfX

— \H exp í\2ki/k2),

where Erfc = 1 - Erf. Now by (1),

(lc) e2 - 2H = c2(F - Tc),       H - ex = cxTc

so that (31) becomes

,QOx K2ki1/2(F- rc)exp(-xVK2)       _exp(-X2)      XäV'2

KiK2"2r, Erfc (X(kVk2)1/2) ErfX ciT„ "

Now again using (29) with z = zB , we find

mx ,  = 2jH - 6i)ki1/2      2circKi1/2

{    ' '       7r"2ErfX Tr^ErfX'

where X is found from (32), and so (29) takes the form

(34) Eiz) = ex 4- ci!Tc Erf (2AiI/2)/Erf X,

for 2 5Í 2* = Xki1 2. From (30a) for 2 è 2*, we have

Eiz) = e2 - iEi») - Eiz))

(35) - • - Xl/2 eX2PJ,flA2) U exp (-X2) - 2XFK11'2]-Erfc iz/¿>2).

But by using (33), (32) and (3c),

A 0™ (    \2-)      o\u.,m - 2ci*i'/2    ^2KiI/2    (F - Tc) exp (-X2kiAs)

A exp ( -X ) - 2XA-K1     - —^ • -_-Erfc (X(ki/k2)»2)

so that finally, for z ^ z   = Xki1 2,

Erfc (X(ki/k2)i/2)

By using the transformation (1) and (lc), as well as the definition 2 = .t/(4£)
1/2
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wc obtain as the solution, two temperature distributions in the Phase I and Phase II

media, separated by the curve

X(t)  = 22V /2 = 2X(ki¿)' /2,

where X is the root of (32) ; in I the solution Tix, t) is given by

(36) Tix,t)

while in II,

(37) Tix,t) = V

which is the solution of F. Neumann!. (See [1, p. 285].) The fact that any other

null sequence of values 8 will lead to the same solution follows from the fact that

any other such sequence would lead again to the transcendental equation (32)

which has exactly one root. (See [3, p. 121].) Our proof is now complete.

3. Remarks on the Derivation of the Equation. We have been led to considering

a function k as defined by (2) by the following heuristic argument. In any change of

phase involving some latent heat H, the internal energy at a point undergoing

such a change of phase (i.e. melting) reaches a critical value H. Then all additional

heat will merely contribute to the mechanism of phase change (i.e. change from a

crystalline to liquid structure), until the internal energy locally reaches the value

2H, at which time the new phase is attained. Thus heat should not be conducted

"in" the region of the interface between the two phases but will be used merely to

change the phase.

4. Numerical Computations for a One-Dimensional Slab. The usefulness of the

result of Section 2 rests on the possibility of its extension to more general phase

change problems for which no explicit solution is known. For by applying numerical

procedures to problem (3a, b) or to its analog arising from other phase change

problems, and then obtaining the temperature distribution from (1), one could hope

to solve such problems numerically, without the costly necessity of paying explicit

attention to the location and behavior of the phase change curve or surface. (See

[4, p. 249].)
In this section we describe the results of some numerical experiments made for

a problem of freezing a one-dimensional semi-infinite slab. Our computations are

for the case in which, in the notation of Section 1, V = Tc ; this is a common situa-

tion which is not dealt with by the work of Section 2. Nevertheless, if in (31),

e2 —» 2H, we obtain in (34) a solution e(x, t) to our original problem, for 8 = 0,

again yielding Neumann's temperature distribution given by (32), (36), (37) for

this case; it is reasonable to conjecture that this solution is also obtainable from

the limit of the solution of (3a, b, c) for V = Tc as e, 8 —> 0.

We consider the case where V = Tc = 170, H = 30, c<, p, Ki = 1, i = 1,2.

Defining T as a function of e by (1), and choosing for k(ê) the step function

(l,        e^ 30,

(38) K-(e) = -jô,        30 < e < 60,

[1,        e è 60,

= ËrTxErf(x/(4'£li)1/2)'

(F- r.)(Erfc(a:/(4K201/2)

Erfc (XÍki/k,)1'2)
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Table I

Location of interface

I

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

x*it)

0
9.79905

13.85795
16.97245
19.59810
21.91134
24.00268
25.92585
27.71590
29.39716
30.98732
32.49978
33.94491
35.33099
36.66470
37.95157

x? ■

0
9.19076

13.10134
16.24252
18.73658
21.37472
23.66167
25.52550
26.99391
28.29732
30.07765
31.92538
33.66367
34.20495
36.11142
37.83937

Table II

True solution values

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

T

0
12.589754
25.095902
37.436500
49.532872
61.311111
72.703425
83.649283
94.096340

104.001112
113.329385
122.056374
130.166616
137.653646
144.519453
150.773771
156.433226
161.520389
166.062763
170.000000

we seek a solution to the equation

(3a') et = ÍKÍe)ex)a x, t > 0,

for which e(0, I) = ei = —140, eix, 0)  = e2 = 60. For Ax, At > 0 and natural

numbers i, j, define e¡' = eiiAx, jAt). Equation (3a ) is formally replaced by the
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Table III

Error = computed solution — true solution

0
2
4
6
8

10
12
14
16
18
20
22
21
26
28
30
32
34
36
38

Ax = 2

.02000

.00318

.05984

.01090

.09776

.02832

.12883

.05654

.13880

.09171

.10239

.15842

.07321

.38241

.27324

.71507

.35301

.18386
0

Ax =  1 Ax =

0
.01582
.03165
.04750
.06341
.07947
.09577
.11240
.12935
.14652
.16363
.18026
.19586
.21007
.22530
.25031
.27405
.20271
.43959

0

.01675

.03338

.04974

.06570

.08109

.09575

.10949

.12209

.13335

.14313

.15129

.15771

.16220

.16464

.16471

.16188

.16155

.24106

Ax =  .25

0

.00873

.01733

.02570

.03385

.04136

.04846

.05498

.06086

.06607

.07057

.07438

.07750

.08003

.08205

.08381

.08564

.08431

.08048
0

Ax =   .125

.00476

.00946

.01406

.01851

.02276

.02676

.03049

.03389

.03695

.03964

.04195

.04383

.04530

.04631

.04681

.04678

.04590

.04622
0

difference equation

(39)
f,

i+i —  6i

SI

1

Äx2
K(e¿+i/2)(e¿+i — e') — K(ei_i/2)(e/ — e'-i)]

with el

(40)

e2, ea   = ei, and

K(e<±i/2) = hix-iei) 4- K(e¿±i)).

We require that 2At/Ax   S 1, a condition which probably guarantees the stability

of (39).
In Section 2 the interface between the two phases was seen to be the limit, for

8 —> 0, of those points (x, t) for which H < e(x, I) < 2H. In our computations, we

choose as an approximation to the location of the interface curve for t = jAt, the

point ¿Ax where i is the greatest integer for which

(41) ei S H < ei+i

This is practical, since as indicated in [4], when 5 = 0 the width of the interval at

fixed j, for which H < e' < 2H cannot exceed 2Ax, while for sufficiently small

5 > 0, the width of the interval does not increase significantly beyond 2Ax. (Which

is intuitively clear since for small 8, little heat can be conducted across the interval.)

To explain our numerical results, we denote by 7V(ô, Ax, w), e/iS, Ax, w)

for w = 2At/Ax , the temperature and energy obtained by (39) at (zAx, jAt) for

the choice of 5 in (38), and given values of Ax and w.

Using (38), (39), (1), the temperature 7Y(5, Ax, to) was computed at time

t = 300 for various choices of 8, Ax and iv, and compared with the actual solution.
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Table IV

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

Error

0

0

.00435

.00860

.01274

.01668

.02039

.02379

.02687

.02958

.03190

.03382

.03535

.03646

.03719

.03755

.03755

.03716

.03702

.03047

Relative error =
error/true value

.0345

.0343

.0340

.0337

.0332

.0327

.0321

.0314

.0307

.0298

.0290

.0280

.0270

.0260

.0249

.0238

.0229

.0188

0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0

IO"2
io-2
10"2

io-2
IO"2
io-2
io-2
io-2
10"2
io-2
io-2
io-2
io-2
io-2
io-2
io-2
io-2
IO"2

In Table I is listed the actual location of the interface curve x*(í) = 2X¿1/2

at intervals of 20 time units for the root X = 1.0955674986099 of (32) ; also shown

are the results of interpolating for the point x\¡ where e = H from the values

Ci , e»+i of (41), for 8 = 0, Ax = 2, w = 1. It is seen that the error in each of these

values is less than Ax = 2. This same degree of accuracy, with an error smaller

than Ax, was obtained in all the experiments performed.

In Table II are listed the true temperature values at time 300, and at intervals

of length 2 from x = 0 to x = 38; from Table I we know the interface is at x = 37.95

for t = 300.
We began by computing the values of 27(0, Ax, 1), for Ax = 2, 1, .5, .25, .125

and comparing them with the true solution of Table II. In Table III is listed the

error = 77(0, Ax, 1) — TiiAx,jAt) for each of these cases. The errors for Ax = 1

are seen to be linear in x. In halving Ax to .5, the error is reduced near the interface.

In again halving Ax to .25, the error is seen to be halved, implying that extrapola-

tion from these values to Ax = 0, by letting 27 = 277(0, .25, 1) - 27(0, .5, 1)

will reduce the error T? — TiiAx, jAt) by one additional decimal place except at

x = 36. Halving Ax again, to .125, no longer halves the error, raising doubts as to

whether the solution of (39) actually will converge to the true solution as Ax, At —» 0.

The choice w = 2At/Ax = 1 in (39) does not yield the most accurate results.

In Table IV are listed the errors and relative errors for 7Y(0, .125, .5), when

w = .5. These results are somewhat more accurate than those found for

77(0, .125, 1) of Table III, as was indicated in [4].

Our last experiments were made for small 8 9e 0. The values of 77(5, Ax, .5) were

found for Ax = .25, .125, and 8 = .001, .0001. For each value of 5, the two values

77 for Ax =  .25, .125 were extrapolated to Ax = 0, yielding
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Table V

Errors in extrapolation for 5^0

0
2
4
6
8

10
12
14
16
is
20
22
24
26
28
30
32
34
36
38

TV (.001)

.00022

.00041

.00052

.00053

.00040

.00012

.00033

.00096

.00178

.00276

.00390

.00518

.00659

.00814

.00998

.01232

.00942

.01546
(J

77 (.0001)

0
.00017
.00038
.00066
.00106
.00569
.00226
.00312
.00414
.00534
.00671
.00820
.00981
.01148
.01319
.01504
.01719
.01400
.02295

0

77(0) = 227(5, .125, .5) - 77(6, .25, .5).

The errors of the resulting values are listed in Table V. For 8 = .001, the values

Ti1 i8) are the most accurate of any calculations performed. When ô is decreased to

.0001 the error grows, due we believe to the growth of the derivative of the solution

at some points.

For 5 = 0 the function «(e) of (38) could be considered replaced by the smooth

function niß) of (2) with no change in the numerical results, when

(42) e < Ax-   mm   I ex
B<e<2B

This relation raises questions about the convergence of the solution to (38), (39)

to the true solution e(x, t) as Ax, At —* 0, since we would then have e —, 0, causing

/(e) to grow of the order 1/e over certain intervals of small length. (See Figure 3.)

Indeed, as indicated by our numerical results, further study of the ideal relations

between 5, e, Ax and Ai for computing the solution of our problem, would be of

both theoretical and practical value.

In all of our experiments the true interface location never differed by more than

Ax from the location given by (41). However, an attempt to better locate the curve

by interpolating for the point at which e = H did not result in greater accuracy,

and a deeper examination of the roles played by e, 5, Ax, At might also be of help

in this regard.

New York University

Courant Institute of Mathematical Sciences

New York, New York
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