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By Richard King

Abstract. Optimum Runge-Kutta methods of orders m = 2, 3, and 4 are de-

veloped for the differential equation y = fix, y) under Lotkin's conditions on the

bounds for / and its partial derivatives, and with the constraint that the coefficient

of dmf/dxm in the leading error term be zero. The methods then attain higher order

when it happens that/ is independent of y.

1. Introduction. Anthony Ralston in [3] developed optimum Runge-Kutta

methods of orders two, three, and four for a single first-order differential equation

y = fix, y). They are best in the sense that in each case the sum of the magnitudes

of the coefficients in the leading truncation error term assumes a minimum under the

following conditions: in the region of interest,

(1.1) \fix,y)\ < M   and
di+3f

dxibyi
< Li+i/M3'-\

where M and L are constants and i -\- j ^ m. These are the conditions used by

Lotkin in [2]. Here, using Ralston's notation, the solution is to be advanced from

Xo to Xi, x2, ■ ■ ■ by the mth-order Runge-Kutta approximation

rn

(1.2) yn+i = yn 4- Z w<k¡,
¿=i

where yn = yixn), the w¡ are constants,

(1.3) ki = hf [xn 4- aih, yn + Ç ßijkA ,

and h = xn+i — x„ . For each such approximation, it turns out that ai = 0 and

¿—i

(1.4) ai = £/3y,       * = 2, 3, ••• ,m.
y-i

The leading truncation error term, Ehm+1, then satisfies

(1.5) \Ehm+1\ < cMLmhm+l;

Ralston minimized c as a function of the parameters to be determined. Other meas-

ures of the truncation error have been considered by Hull and Johnston [1].

Our purpose is to find optimum methods of orders m = 2, 3, and 4 which will

attain higher order when it happens that/ is independent of y. This requires that in

each case the coefficient of dmf/dxm (and, in fact, of Dmf) in the leading error term be

zero; here D is defined as

(1.6) D = d/dx + fn d/dy,       fn = fix„ ,yn),

and
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(1.7) 

Furthermore, the vanishing of the term involving D"'f implies that congitions 
(1.1 ) need only be satisfied for i + j ~ 1n - 1. 

2. ,-;;econd-order Methods. The coefficient of h3 in the error function is 

(2.1 ) 

Equating t1..~ coefficient of D2f to zero yields 

(2.2) {321 = ~, W2 = t, 
so that the procedure becomes 

(2.3) Yn+l- Yn = (t)hf(xn , Yn) + (t)hf(xn + (~)h, Yn + (~)hjn) ' 

This is the same as Ralston's second-order method, and the truncation error is 

(2.4) 

In this instance, no minimization problem appears. For j independent of Y the 
procedure becomes Radau quadrature of order 3. 

3. Third-order Methods. Here the coefficient of h4 in the error function is given by 

(3.1) E = a1D3j + azillD2j + a3DjDjll + a4f1l2Dj, 

where 

1 1( a a) 
al = 4! - 3! a2 W2 + a3 W3 , 

(3.2) 

1 
a4 = 4! ' 

But the vanishing of al implies that 

(3 .3) 6a2aa - 4(a2 + (3) + 3 = O. 

Along this hyperbola the error is bounded as follows: 

(3.4) lEI < [I a21 + 1 2a2 + a31 + 1 a2 + a31 + 21 a31 + 21 a411ML3, 
with 

1 a2 
az = 24 - 12' 

(3.5) 
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If we now substitute (3.3) into (3.4) and minimize the right-hand side of (3.4)

(as a function of a2 or of a%), we get a2 = \, a3 = f- With these parameter values

the suggested procedure becomes

(3.6) yn+i — y„ = r\h + §fc2 4- îh ,

where

fci = hfix„ , y„),

(3.7) h = hfixn + \h, yn + Pi),

k3 = hfixn + \h, y„ — T^ki + ffe).

The resulting bound on Eh* is

(3.8) | Eh* | < .1380ML3h\

compared with .llllML3/¿4, in Ralston's third-order procedure.

But if / is independent of y, then the procedure is fourth-order instead of third

and the error bound is

(3.9) | Ehb | < 3.858 X 10"54ÍL4A5.

4. Fourth-order Methods. If we set to zero the coefficient

(4.1) bi = xio — iïia2w2 4- azw3 4- io*)

of D4/ in the leading error term, we again get an hyperbola in a2 and a3 :

(4.2) 10a2a3 - 5(a2 + as) 4- 3 = 0.

Along this curve 63 = — 4&i vanishes also. The elements in

I E | < [S| b2 | 4- 8| 64 I + I 65 I 4- I 265 + b7 \ + \ bb + be + b7 |
(4.3)

+ I 661 + I 2b6 + 67 I + I h I + 2| 68 \¡ML4

then become (see [1], p. 307)

,        5o3 —3 , 0:3 — 1 , , 1— a3
°Z  ~  -KJ7,- ; °i  =  „,-.-,--T  , Of,   =   —04   =

(4.4)        h   =

240     ' 240(2«3 - 1) ' 240(2«3 - 1) '

(250a34 - 300a33 4- lOffla2 4- 93a3 - 27)

[(240)(10«32 - 12o-3 + 3)]

2 - 5a3 , 1
67 _ "^Ô- '        h ~ 120 •

Minimizing the right-hand side of (4.3) along the hyperbola (4.2), we get

a  _  (r\112 4. _|_  (F,\112

(4.5a) a2 = -~—  = .1550510257,   «3 =  ~^0;  = .6449489743,

so that
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16 - (6)1/2 16 + (6)"'2 1
wi = 0,       w-i = -—-,       w-i =-—— -,       «>4 = -,

3() 36 9

4 - (6)1/2 /11   '   "«^

A4   =    1, P21   =
10

42 4- 13(6)1/2

P32   =   -~- , P-ll

/ll 4-4(6)1/2\

50 ' ™ 4

<3 4- 2(6)"'2\ _ 9 - (6)
P42   — I  -^- I  , P43   —

1   2

4

This defines the following Runge-Kutta scheme:

(4.6)       ijn+i - Un =  .3764030627fc2 + .5124858262fc3 4- .111111111 l/c4 ,

with

fci = hfixn , y„),

k2 = hfixn + .1550510257Ä, yn + .1550510257/bi),
(4.7)

h = hfixn  +   .6449489743/i, y„   -   .8319183588*;!  4-   1.476867333fc2),

fc4 = hfixn + h, yn -f- 3.311862178fci - 3.949489743/c2 + 1.637627564/c3).

The error bound is

(4.8) \Eh"\ < (U +480(6)1¿) ML^ = -0944Ä/LV,

as compared with

(4.9) | Eh61 < .0546A/LV

for Ralston's fourth-order procedure.

In this case the method becomes fifth order when / is independent of y, with

error bound

(4.10) | M6 | < 1.389 X IO'*ML'h\

5. An Additional Constraint. Now suppose we consider the second error term—

that involving hm   . In this term, setting the coefficient of Dm+1f to zero leads to

(5.1) 10a2ai - 5(a2 4- a,)  4" 3 = 0

for third-order methods and to

(5.2) 2(a2"o¡3 4" a2a3 ) — ia2  — a2a3 + ai) — (a2 4- a3) 4~ 1 = 0

for fourth-order methods. The intersection of (5.1) and (3.3) is the point

(Q _ (6)^   6 + (6)i/^

(«,,«.) = ^—m—,—10—;>

which determines the parameters
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1                   16 4- (6)1/2 16 - (6)1/2

«>i = - ,       w2 = -—-,       w3 =
9' 36 * 36

(53)
.        6 - (6)1/2 „ /54 + 19(6)"2\ _ 102 + 22(6)1/2
P21-T77-    , Pn    — —   I   -—-r-      I   , P32    =

10        '        " V        250 ) '        K 125

and thus defines the third-order procedure

(5.4) y„+i - ijn =  .llllllllllfci 4- .5124858262/c2 + .3764030627fc3,

where

fci = hfixn , yn),

(5.5) k2 = hfixn + .3550510257Â, y„ + .3550510257fci),

h = hfixn + .8449489743Â, yn - .4021612205/ci 4- 1.247110195^),

with

(5.6) | Eh* | < .1391MLW

For derivative functions / that are independent of y, this procedure becomes

Radau quadrature of order five with leading error term

(5.7) | Eh61 < 1.389 X 10~5ML5A6.

Similarly, (5.2) and (4.2) intersect at

'5-(5)1/2   5 4-(5)1/2\
(a2, a3) -cio    '    io    y

to yield

15 5 1
Wi = — ,        w2 = — ,        «'s = pj ,        Wi = 12'

(5.8)    a4 =  1,       P21 =-Jq-, ßsi =   —I -20-j>    ^ =
3 4-J5)1

4

/5 + 3(5)1/2\. -1 + 5(5)1/2 ^5 + 3(5)1,2\ 0    _ 5 - (5)1
P41   —   -T- , P42   —    _

This is the fourth-order system

2/n+i - y, = .08333333333^! 4- .4166666667fc2 4- .4166666667fc3
(5.9)

+ .08333333333/C4,

where

h = hfixn, y„),

k2 = hfixn 4- .2763932023Ä, y„ + .2763932023fci),
(5.10)

h = hfixn 4- .7236067977A, yn -  .5854101966/%! 4-  1.309016994fc2),

k4 = hfixn + h,yn + 2.545084972fci - 2.927050983/c2 4- 1.381966011fc3),

with

(5.11) \Eh5\ < .121SML%5.
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For / independent of y, (5.9, 10) is Lobatto's sixth-order quadrature formula, with

truncation error

(5.12) | Eh1 | < 6.614 X 10~7ML%7.

The restriction that a4 = 1, however, precludes having a fourth-order integration

scheme corresponding to Radau quadrature, which in this case is of order seven.

6. Examples. Both of Ralston's examples and several others have been pro-

grammed for a CONTROL DATA 3600 computer, using all of the proposed

methods. Results were as good as those for the Ralston schemes. Furthermore, the

suggested procedures (3.6, 7), (4.6, 7), (5.4, 5), and (5.9, 10) did indeed produce

results of the predicted order of accuracy when the example

(6.1) y  = y,       2/(0) = 1,       solution yix) = ex

was redone with y = ex. That is, the integration procedures reduce to high-order

quadrature formulas and thus could be used to do double duty in a subroutine

library.
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